.第一节_金属材料的力学性能..ppt
文本预览下载声明
金属的力学性能 定义 : 金属材料的力学性能是指金属材料在不同环境(温度、介质)下,承受各种外加载荷(拉伸、压缩、弯曲、扭转、冲击、交变应力等)时所表现出的力学特征。 指标 : 弹性 、刚度、强度、塑性 、 硬度、冲击韧性 、断裂韧度和疲劳强度等。 材料的其他性能 物理性能: 密度、熔点、导热性、导电性、热膨胀性、磁性等; 化学性能: 耐腐蚀性、抗氧化性、化学稳定性等; 工艺性能: 铸造性能、锻造性能、焊接性能、切削加工性、热处理工艺性等。 一、刚度和弹性 评价材料力学性能最简单和最有效的方法就是测定材料的拉伸曲线,在GB/T 6397—1986《金属拉伸试验试样》中对试样的形状、尺寸及加工要求均有明确的规定,如图1-1所示。 一、刚度和弹性 一、拉伸实验与拉伸曲线 1.拉伸试样 GB6397-86规定《金属拉伸试样》有: 圆形、矩形、异型及全截面. 常用标准圆截面试样。 长试样:L0=10d0; 短试样:L0=5d0 一、刚度和弹性 op段:比例弹性变形阶段; pe段:非比例弹性变形阶段; 平台或锯齿(s段):屈服阶段; sb段:均匀塑性变形阶段,是强化阶段。 b点:形成了“缩颈”。 bk段:非均匀变形阶段,承载下降,到k点断裂。 断裂总伸长为Of,其中塑形变形Og(试样断后测得的伸长),弹性伸长gf。 4.应力与应变曲线 二、强度与塑性 1、强度 材料在外力作用下抵抗破坏的能力称为强度。根据加载方式不同,强度指标有许多种,如屈服强度、抗拉强度、抗压强度、抗弯强度、抗剪强度、抗扭强度等。其中以拉伸试验测得的屈服强度和抗拉强度两个指标应用最多。 二、强度与塑性 屈服强度 在图1-2中,进程超过s点后,材料将发生塑性变形。在BC段,持续发生塑性变形而应力却不增加,材料的这种现象称为屈服。s点所对应的应力称为屈服强度,用σs 表示,屈服强度反映材料抵抗永久变形的能力。实际上,多数材料的屈服阶段不很明显或从拉伸曲线上看不出这一阶段,因此规定用拉伸时产生0.2%残余变形所对应的应力为材料的屈服应力,称为条件屈服强度或名义屈服强度,记为σ0.2,如图1-3所示。 二、强度与塑性 δ与ψ的数值越大,材料在断裂前发生的变形越大,说明材料的塑性越好。由于有些材料在拉伸试验时会出现局部颈缩,而有些材料则不会,因此用ψ表示材料的塑性比用δ表示更接近真实情况。 由于不同长度的试样所得伸长率不同,长度越大,伸长率越小。采用长试样进行拉伸试验,所得伸长率用δ10表示,而用短试样所得伸长率用δ5表示,显然有δ5>δ10。 二、强度与塑性 材料的塑性指标具有重要的实际意义。塑性良好的材料,冷压成型好。飞机和发动机上的许多薄壁零件,如蒙皮、翼肋、燃烧室零件等都是冷压成型的,使用的材料都应具有良好的塑性。此外,具有一定塑性的零件,在使用过程中万一超载或形成应力集中,它可产生少量塑性变形,由于加工硬化效应而使它的强度提高,不致突然断裂。如果塑性不够而产生脆性的突然断裂,这在工程上是很危险的。 (1)布氏硬度 HB ( Brinell-hardness ) 三、 硬 度 布氏硬度的试验原理如图1-4所示。将直径为D的钢球或硬质合金球,在一定载荷P的作用下压入试样表面,保持一定时间后卸除载荷,所施加的载荷与压痕表面积的比值即为布氏硬度。实际操作时,先测量压痕平均直径d,然后查表得到材料的布氏硬度值。 (1)布氏硬度 HB ( Brinell-hardness ) (1)布氏硬度 HB ( Brinell-hardness ) (2)洛氏硬度 HR ( Rockwll hardness ) 洛氏硬度的试验原理如图所示,根据压痕深度大小表示材料的硬度值,压坑越深,硬度越低。试验时,根据材料硬度选择相应的压头。当测定硬度较高的材料时,选用120°的金刚石圆锥压头;测定硬度较低的材料时,选用淬火钢球压头。硬度计上有一个表头,测量时表头上可直接读出被测件的硬度值,故比布氏法方便,而且压痕小,可以直接在成品零件上测试。 洛氏法根据测量时选用载荷与压头的不同,分为9个标尺,常用的有A、B、C三个,并将标尺代号标注在符号HR的右边。如HRA、HRB、HRC等,硬度值仍写在符号HR的前面,如50HRC表示用C标尺测定的洛氏硬度为50。应当注意:不同级别的硬度值不能直接相互比较。洛氏法的缺点是测量结果分散度大。 (3)维氏硬度 HV ( diamond penetrator hardness ) 维氏硬度的试验原理如图所示。将顶部两相对面具有规定角度(136°)的正四棱锥体金刚石压头在一定载荷P的作用下压入试样表面,并保持一定时间后卸载,所施加的载荷与压痕表面积的比值即为维氏硬度。维
显示全部