青海省西宁市大通二中2025届高三下学期联合考试数学试题含解析.doc
青海省西宁市大通二中2025届高三下学期联合考试数学试题
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在展开式中的常数项为
A.1 B.2 C.3 D.7
2.函数的大致图象是()
A. B.
C. D.
3.已知集合A,则集合()
A. B. C. D.
4.函数的对称轴不可能为()
A. B. C. D.
5.已知某口袋中有3个白球和个黑球(),现从中随机取出一球,再换回一个不同颜色的球(即若取出的是白球,则放回一个黑球;若取出的是黑球,则放回一个白球),记换好球后袋中白球的个数是.若,则=()
A. B.1 C. D.2
6.定义两种运算“★”与“◆”,对任意,满足下列运算性质:①★,◆;②()★★,◆◆,则(◆2020)(2020★2018)的值为()
A. B. C. D.
7.已知实数、满足约束条件,则的最大值为()
A. B. C. D.
8.设a=log73,,c=30.7,则a,b,c的大小关系是()
A. B. C. D.
9.执行下面的程序框图,则输出的值为()
A. B. C. D.
10.执行如图所示的程序框图,若输入,,则输出的值为()
A.0 B.1 C. D.
11.五名志愿者到三个不同的单位去进行帮扶,每个单位至少一人,则甲、乙两人不在同一个单位的概率为()
A. B. C. D.
12.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为().
A.6500元 B.7000元 C.7500元 D.8000元
二、填空题:本题共4小题,每小题5分,共20分。
13.根据如图所示的伪代码,若输出的的值为,则输入的的值为_______.
14.已知函数在定义域R上的导函数为,若函数没有零点,且,当在上与在R上的单调性相同时,则实数k的取值范围是______.
15.有以下四个命题:①在中,的充要条件是;②函数在区间上存在零点的充要条件是;③对于函数,若,则必不是奇函数;④函数与的图象关于直线对称.其中正确命题的序号为______.
16.若函数在区间上恰有4个不同的零点,则正数的取值范围是______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在直角坐标系中,已知直线的直角坐标方程为,曲线的参数方程为(为参数),以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线和直线的极坐标方程;
(2)已知直线与曲线、相交于异于极点的点,若的极径分别为,求的值.
18.(12分)在△ABC中,角所对的边分别为向量,向量,且.
(1)求角的大小;
(2)求的最大值.
19.(12分)在直角坐标系中,已知点,的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求的普通方程和的直角坐标方程;
(2)设曲线与曲线相交于,两点,求的值.
20.(12分)已知函数,.
(1)当时,求函数的值域;
(2),,求实数的取值范围.
21.(12分)已知倾斜角为的直线经过抛物线的焦点,与抛物线相交于、两点,且.
(1)求抛物线的方程;
(2)设为抛物线上任意一点(异于顶点),过做倾斜角互补的两条直线、,交抛物线于另两点、,记抛物线在点的切线的倾斜角为,直线的倾斜角为,求证:与互补.
22.(10分)已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.
(1)求曲线与直线的直角坐标方程;
(2)若曲线与直线交于两点,求的值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【解析】
求出展开项中的常数项及含的项,问题得解。
【详解】
展开项中的常数项及含的项分别为:
,,
所以展开式中的常数项为:.
故选:D
【点睛】
本题主要考查了二项式定理中展