地震层析成像程序介绍.doc
文本预览下载声明
地震层析成像摘要:层析成像方法是一种公认的基于地震数据的有效方法,近20年来,层析成像方法发展迅速。从原理上讲,层析成像方法可分为两大类,一是基于射线理论走时层析成像,二是基于波动方程的散射层析成像。本文介绍新的层析成像方法及其技术,包括各向异性介质的2D立体层析成像;时移层析成像的超声数据试验;绕射层析成像的迭代方法:真振幅偏移的本质;用于速度模型构建的下行波折封层析成像和反射层析成像;多尺度波动方程反射层析成像,并在后面展开层析成像方法应用于构造速度模型的分析和实例。关键字:层析成像;偏移成像;速度模型;克希霍夫偏移。一、引言偏移成像在地震勘探和开发过程中,已经成为一种关键的地震数据处理技术。成像的精度和可靠性依赖于速度模型的准确与否。速度分析历来都是地震资料处理的基础工作,从均方根速度、层速度以及叠加速度等,贯穿于地震资料处理的方方面面,速度分析方法丰富多样。迄今,层析成像方法是一种公认的基于地震数据的有效方法,近20年来,层析成像方法发展迅速。从原理上讲,层析成像方法可分为两大类,一是基于射线理论走时层析成像,二是基于波动方程的散射层析成像。后一种层析成像很复杂,正处于理论研究阶段。尽管其实际应用不多,但却是层析成像的发展方向。走时层析成像比较成熟,有很多的实际应用。它又可细分为初至走时层析成像和反射走时层析成像。初至走时层析成像方法简单直观,稳定性较好,主要应用于井间地震以及近地表的速度分析,但是,初至走时层析成像由于只利用初至走时,所以,得到的速度模型比较粗糙,分辨率也较低。反射层析成像主要应用于地下速度和反射层深度的反演,以及叠前或叠后偏移的速度分析之中。前者由于速度和深度之间的藕合关系,以及反射波到达时间及其层位难于拾取等,制约了它的广泛应用,但是,这是一种极具价值和潜力的反演方法。后者则是利用经过叠前或叠后CRI道集中同相轴未被拉平的剩余时差,经过层析成像来修正用于偏移的速度模型。这种构建速度模型的方法,目前正广泛应用于叠前深度或时间偏移中。值得关注的还有,地震资料与其他地球物理资料间的联合反演,其反演结果互为验证、相得益彰,为我们提供了更为可靠的反演结果。二、新的层析成像方法及其技术1.各向异性介质的2D立体层析成像立体层析成像是一种利用局部相关同相轴作为输人的斜率层析成像方法。本文首次将立体层析成像推广于各向异性介质中,因此不仅使得方程组更为复杂,而且保持反演的稳定性也困难得多。利用射线扰动理论来计算雅可比矩阵,包括所有数据参数对所有模型参数的导数。数值试验结果表明:在2DVTI介质中,各向异性立体层析成像能很好地收敛于4个Thomsen参数,尽管在反演时每次仅估算一个Thomsen参数。后续的工作将在算法中增加诸如co-depthing的约束条件。2.时移层析成像的超声数据试验本文通过在实验室得到的井间超声宽频带的波形数据,来进行时移层析成像方法的有效性研究。分别利用基于射线理论和散射理论的时移层析成像方法来估算速度差异,关于时移层析成像的方法描述如下:利用一阶Rytov近似来模拟波场,仅考虑P波速度的变化,而忽略S波以及密度的变化。那么,在震源位置激发,在检波器位置处接收的Rytov波场表示为 (1)式中,表示参考速度模型时的参考波场是一阶Born波场,表示为 (2)式中,表示随机参考介质中远场的格林函数;△v(r)表示速度扰动量。相对于参考波场,从方程(1)推导得到的散射场走时时移和振幅变化取一阶近似,表示为 (3) (4)式中,和是著名的Frechet核函数。对于速度为的均匀参考介质中2D的波传播,走时时移的Frechet核函数为 (5)3D的情况则为 (6)超声试验的物理模型如图la所示,图中阴影线部分表示油藏层的注水带,时移层析成像的目的在于确定注水带的范围以及检侧速度变化。利用同样的模型,来模拟注水前后的情况,因此,采集了两套数据。在模拟井间超声数据采集时,采用500HZ的压电传感器作为展源和接收器(均为51个),共有2601道记录,其频率介于200HZ:和500HZ之间。应用散射层析成像,其结果如图lb,图lb表示注水前后层析成像结果的差异,可以看到:噪声较大,且低估了注水带的速度,这是因为分别对两个数据进行层析成像,所用的参数不尽相同之故。为了避免这些问题,直接从两个波场的差异来进行层析成像,其结果如图1c3.绕射层析成像的迭代方法:真振幅偏移的本质本文提出了一种非均匀背景的绕射层析成像算法,绕射层析成像可以理解为滤波反向传播,如偏移+建波器。在非均匀背景介质中显式计算滤波器的计算量太大,可以通过迭代方法来间接计算,而且,还能很容易地将先验信息作为约束条件考虑进算法中,并为单一的频率分量或多频率分量反演的选择提供了极
显示全部