2013中考全国100份试卷分类汇编:操作与探究.doc
文本预览下载声明
2013中考全国100份试卷分类汇编
操作与探究
1、(13年北京5分22)阅读下面材料:
小明遇到这样一个问题:如图1,在边长为的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ的面积。
小明发现:分别延长QE,MF,NG,PH,交FA,GB,HC,ED的延长线于点R,S,T,W,可得RQF,SMG,TNH,WPE是四个全等的等腰直角三角形(如图2)
(2)求正方形MNPQ的面积。[中国教*育#^@出版网]
参考小明思考问题的方法,解决问题:
如图3,在等边△ABC各边上分别截取AD=BE=CF,再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ,若,则AD的长为__________。
解析:
考点:操作与探究(旋转、从正方形到等边三角形的变式、全等三角形)
2、(2013成都市)如图,,为⊙上相邻的三个等分点,弧,点在弧上,为⊙的直径,将⊙沿折叠,使点与重合,连接,,.设,,.先探究三者的数量关系:发现当时, .请继续探究三者的数量关系:
当时,_______;当时,_______.
(参考数据:,
)
答案:;或
解析:
3、(2013山西,21,8分)(本题8分)如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点。
(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法)。
①作∠DAC的平分线AM。②连接BE并延长交AM于点F。
【】解:①作图正确,并有痕迹。
②连接BE并延长交AM于点F。
(2)猜想与证明:试猜想AF与BC有怎样的位置关系和数量关系,并说明理由。
【】解:AF∥BC且AF=BC
理由如下:∵AB=AC,∴∠ABC=∠C∴∠DAC=∠ABC+∠C=2∠C
由作图可知:∠DAC=2∠FAC
∴∠C=∠FAC.∴AF∥BC.
∵E是AC的中点, ∴AE=CE, ∵∠AEF=∠CEB ∴△AEF≌△CEB ∴AF=BC.
这种利用面积关系解决问题的方法,使抽象的数量关系因集合直观而形象化。
【研究速算】
提出问题:47×43,56×54,79×71,……是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?
几何建模:
用矩形的面积表示两个正数的乘积,以47×43为例:
(1)画长为47,宽为43的矩形,如图③,将这个47×43的
矩形从右边切下长40,宽3的一条,拼接到原矩形的上面。
(2)分析:原矩形面积可以有两种不同的表达方式,47×43
的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形
面积之和,即47×43=(40+10)×40+3×7=5×4×100+
3×7=2021
用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,
再乘以100,加上个位数字3与7的积,构成运算结果
归纳提炼:
两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述)
_____________________________________________________________________________
_____________________________________________________________________________
【研究方程】
提出问题:怎么图解一元二次方程
几何建模:
(1)变形:
(2)画四个长为,宽为的矩形,构造图④[来源:Z_xx_k.Com]
(3)分析:图中的大正方形面积可以有两种不同的表达方式,或四个长,宽的矩形之和,加上中间边长为2的小正方形面积
即:
∵
∴
∴
∵
∴
归纳提炼:求关于的一元二次方程的解
要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并标注相关线段的长)
【研究不等关系】
提出问题:怎么运用矩形面积表示与的大小关系(其中)?
几何建模:
(1)画长,宽的矩形,按图⑤方式分割
(2)变形:
(3)分析:图⑤中大矩形的面积可以表示为
;阴影部分面积可以表示为,
画点部分的面积可表示为,由图形的部分与整体
的关系可知:>,即
>
归纳提炼:
当,时,表示与的大小关系
根据题意,设,,要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并标注相关线段的长)
[来源:Z。xx。k.Com]
解析:
5、(2013年江西省)某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:
●操作发现:
在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧
显示全部