第2章 稳态热传导详解.ppt
文本预览下载声明
取体积元: 两侧对流: 单位体积: 式中, ——对流周长, ——导热面积 引入: 过余温度 3. 分析求解 常量 通解: 特解:(代入边界条件) 肋片温度分布: 双曲函数: 讨论1:肋顶处 , ; 肋顶温度 讨论2:肋根处 , 肋片散热量 ——总散热量 4. 解的应用 P61例题2-6 压气机设备的储气筒里的空气温度计用一支插入装油的铁套管中的玻璃水银温度计来测量,如图所示。已知温度计的读数为100oC,储气筒与温度计套管连接处的温度为t0=50oC,套管高H=140mm、壁厚δ=1mm、管材导热系数λ=58.2W/(m·K),套管外表面的表面传热系数h=29.1W/(m2·K)。试分析(1)温度计的读数能否准确地代表被测地点处的空气温度?(2)如果不能分析其误差有多大? 解:热量传递有三种方式: ① 套管顶部向根部导热——散热; ② 套管外表面与储气筒的辐射传热——散热; ③ 套管外表面与压缩空气的对流传热——吸热; 稳态时:温度恒定,散热=吸热。 测量误差:套管与压缩空气存在传热,两者有温差。 套管因导热缘故,温度在套管高度方向上有变化, 因对称性,在套管截面上,可以认为温度相同, 所以,套管可看成等截面直肋: 肋高 , 导热截面 , 对流换热周长 肋顶温度 过余温度 , 讨论:如何减少测温误差? 措施:减小 ,增大 、 方法:① 选用导热系数小的材料作套管; ② 增加套管高度,并减小壁厚; ③ 强化套管与流体间的换热; ④ 在储气筒外加保温材料。 2.4.2 肋效率与肋面总效率 1. 等截面直肋的效率 肋效率 :表征肋片散热的有效程度。 理想散热量 :假设整个肋表面处于肋基温度下的散热量。 对等截面直肋: 式中: 即: 注意:① ——纵剖面积; ② ——考虑肋顶散热。 2. 其他形状肋片的效率 P68例题2-7 为了强化换热,在外径为25mm的管子上装有铝制矩形剖面的环肋,肋高H=15mm,厚δ=1.0mm,周围流体温度为50oC 。肋基温度为170oC。设铝的导热系数λ=200W/(m·K),肋面的表面传热系数h=130W/(m2·K),试计算每片肋的散热量。 解: ① 环肋 , 查效率曲线: ② 理想散热量 实际散热量 第2章 稳态热传导 2.1 导热基本定律——傅里叶定律 2.1.1 各类物体的导热机理 微观机理: 气体导热:分子碰撞; 固体导热:导体——自由电子运动; 非导体——晶格振动(弹性波); 液体:介于气体和液体之间(分子力、弹性波)。 2.1.2 温度场 温度场:某一时刻,物体中各点的温度都有确定的值。 稳态温度场 非稳态温度场 一维稳态温度场 二维稳态温度场 等温面:温度相等的 各点组成的曲面。 特点:① 不相交; ② 疏密反映 热流密度大小。 2.1.3 导热基本定律 一维导热 三位维导热 温度梯度 方向:等温线法线,温度变化最快; 大小:温度变化率最大值。 热流线:用曲线表示 ,与等温面处处垂直。 2.1.4 导热系数 工程上,常由实验测定 (第一个实验) ——沿等温面法线 方向变化率 导热系数与两因素有关: ① 与温度有关 线性近似 常用平均值 ,或 ② 与物质有关 保温材料 时, 蜂窝状多孔材料:矿棉渣、硅藻土、岩棉板、膨胀珍珠岩等。 2.1.5 工程导热材料的一般分类(课后自己看) 2.2 导热问题的数学描写 2.2.1 导热微分方程 导热微分方程:温度场所满足的微分方程。 方程推导:取微元平行六面体 ① 导入热流量: ② 导出热流量: ③ 热力学能增量: 单位时间 取微分 ④ 内热源: 单位时间,单位体积内热源产生热量 内热源单位时间生成热量 能量守恒: 热力学能增量 (导入热量 导出热量) 内热源热量 非稳态项 扩散项 源项 温度随时间变化 温度在空间变化 内含热源 简化形式: (1)导热系数为常数——常物性 热扩散率 (2)常物性、无内热源 (3)常物性、稳态 —— 泊松方程 (3)常物性、无内热源、稳态 —— 拉普拉斯方程 注:圆柱坐标系和球坐标系的导热微分方程,见书P44 。 2.2.2 定解条件 定解条件:求解微分方程时, 解
显示全部