云南省曲靖市麒麟高级中学2023-2024学年高三下学期六调数学试题.doc
云南省曲靖市麒麟高级中学2023-2024学年高三下学期六调数学试题
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为,,,且,则此三棱锥外接球表面积的最小值为()
A. B. C. D.
2.已知双曲线的渐近线方程为,且其右焦点为,则双曲线的方程为()
A. B. C. D.
3.已知函数,满足对任意的实数,都有成立,则实数的取值范围为()
A. B. C. D.
4.已知等差数列的前n项和为,且,则()
A.4 B.8 C.16 D.2
5.已知函数(),若函数有三个零点,则的取值范围是()
A. B.
C. D.
6.设为自然对数的底数,函数,若,则()
A. B. C. D.
7.如图是国家统计局公布的年入境游客(单位:万人次)的变化情况,则下列结论错误的是()
A.2014年我国入境游客万人次最少
B.后4年我国入境游客万人次呈逐渐增加趋势
C.这6年我国入境游客万人次的中位数大于13340万人次
D.前3年我国入境游客万人次数据的方差小于后3年我国入境游客万人次数据的方差
8.设集合,集合,则=()
A. B. C. D.R
9.已知双曲线C:()的左、右焦点分别为,过的直线l与双曲线C的左支交于A、B两点.若,则双曲线C的渐近线方程为()
A. B. C. D.
10.曲线在点处的切线方程为()
A. B. C. D.
11.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:,,,,则按照以上规律,若具有“穿墙术”,则()
A.48 B.63 C.99 D.120
12.已知函数,当时,恒成立,则的取值范围为()
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.在区间内任意取一个数,则恰好为非负数的概率是________.
14.在中,,.若,则_________.
15.已知向量,若向量与共线,则________.
16.在中,内角所对的边分别是.若,,则__,面积的最大值为___.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数.
当时,求不等式的解集;
,,求a的取值范围.
18.(12分)已知数列中,(实数为常数),是其前项和,且数列是等比数列,恰为与的等比中项.
(1)证明:数列是等差数列;
(2)求数列的通项公式;
(3)若,当时,的前项和为,求证:对任意,都有.
19.(12分)已知等差数列的公差,且,,成等比数列.
(1)求数列的通项公式;
(2)设,求数列的前项和.
20.(12分)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为.
(Ⅰ)求椭圆的离心率;
(Ⅱ)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程.
21.(12分)在中,角的对边分别为,且.
(1)求角的大小;
(2)已知外接圆半径,求的周长.
22.(10分)已知三棱锥中,为等腰直角三角形,,设点为中点,点为中点,点为上一点,且.
(1)证明:平面;
(2)若,求直线与平面所成角的正弦值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【解析】
根据三视图得到几何体为一三棱锥,并以该三棱锥构造长方体,于是得到三棱锥的外接球即为长方体的外接球,进而得到外接球的半径,求得外接球的面积后可求出最小值.
【详解】
由已知条件及三视图得,此三棱锥的四个顶点位于长方体的四个顶点,即为三棱锥,且长方体的长、宽、高分别为,
∴此三棱锥的外接球即为长方体的外接球,
且球半径为,
∴三棱锥外接球表面积为,
∴当且仅当,时,三棱锥外接球的表面积取得最小值为.
故选B.
【点睛】
(1)解决关于外接球的问题的关键是抓住外接的特点,即球心到多面体的顶点的距离都等于球的半径,同时要作一圆面起衬托作用.
(2)长方体的外接球的直径即为长方体的体对角线,对于一些比较特殊的三棱锥,在研究其外接球的问题时可考虑通过构造长方体,通过长方体的外球球来研究三棱锥的外接球的问题.
2、B
【解析】
试题分析:由