三篇公交车合理调度的优化模型论文节选.doc
文本预览下载声明
下面论文非优秀文章,只作参考。
公交车合理调度的优化模型
温育权、梁海花、侯飞燕
摘要:公共交通是城市交通的中央组成部分,公交车的调度具有重要的现实意义.本模型利用统计资料的特点,运行统计,最优化等数学方法以及Maple软件,考虑到公交公司和乘客双方的利益相矛盾,给出了一个最优的调度时刻表,计算出了所需车辆至少要53辆.进而劳力到调度方案的可行性,通过计算机模拟搜索,给出了一个便于操作的优化方案,计算出所需车辆至少为44辆.校验该方案,公交公司的利益很大程度满足,原来每天每车次的平均载客量只降低了39人/车次,而乘客满意度也不会有很大降低.
关键词:公交车调度;载客率;发车时刻表;最优模型;优化方案
一、问题的提出
公共交通是城市交通的重要组成部分,作为公交车的调度具有重要的现实意义.某城市的公交公司统计了上行下行两个方向的某条公交线路上的客观情况.给出了一个典型工作日各时组两个运行方向每站上下车人数.该条公交线路上行方向共14站,总长14.58公里;下行方向共13站,总长14.61公里.公交公司配给该线路标准载客100人的同一型号的大客车,客车在该线路上运行的平均速度为20公里/小时.现在要根据这些资料,为该线路设计一个便于操作的全天(工作日)的公交调度方案,包括:
1.两个起点站的发车时间;
2.一共需要多少辆车;
3.该方案以这样的程度照顾到了乘客和公交公司双方的利益.其中,营运调度要求:
(1).每一辆客车的满载率50%~120%.
(2).乘客候车时间一般不超过10分钟,早高峰期不超过5分钟.
二、模型的假设
1、交通顺畅,公交车运行秩序良好,路上无阻塞情况,汽车也不会出现突然坏掉或燃料不足等情况.
2、每辆客车始终以20公里/小时的平均速度行驶,到各站的停留载客时间也涵盖在这个车速里,即不考虑每个乘客的上下时间.
3、汽车一到总站,乘客全部下车,从而保证了总站发车时空车.
4、不论乘车距离长短,上车票价都相同.(如:1元/人)
5、公交公司的利益只考虑汽车在路面上行驶的车辆次数与载客率.
6、全天(工作日)的公交车调度从5:00开始到23:00结束,分为18个单位时组,每个时组为1小时,表示为
7、乘客到各站点的人数,在各时组里均匀分布.
8、乘客利益只考虑等车时间的长短.
三、符号的约定
、 分别表示上下行线第时组内需要开出的乘客总次数,i=
、 分别表示在上下行线第时组内正在路上行驶的车辆数,i=
、 分别表示在上下行线客车从始点到终点所需行驶时间.
、 分别表示在上下行线个站点间距离
表示汽车行驶的平均速度v=20公里/小时.
表示从第i+1个车次的发车间隔时间
表示从起点到站所需时间
表示每次车的平均载客量.
四、问题的分析
本案例给出了上下行两方向个时组上行下效每站点上下车总人数的统计数,由这些资料来确定一个便于操作的全天(工作日)的公交车合理调度的方案,它要求某程度照顾到乘客与公交公司双方利益衡量.
乘客利益是与等待时间有关,等待时间越少,满意度越高;汽车公司利益与满载率和两站发出次数有关.显然减少乘客等待是与增加公司利益是两个相互矛盾的问题.我们可求出一个在每一组内各相邻站点见的公交车上乘坐的总人数,以满载率为约束条件,求得每一个时组内上下行线两方向所需车次数,在此基础上寻找最高峰时段所需的最少车辆数.考虑到上下全线车行驶时间分别为43.78分和43.83分,都不足一个小时,在余下近16分钟内车辆可循环利用,同时可以补充车辆,从而得出所需最少车辆数.
在此基础上,我们用计算机搜索法搜索出一个同时照顾汽车公司与乘客利益的最优模型,从现实考虑,却不可能合理调度,因此再在此基础上模拟搜索,得出一个合理的调车时刻表.
五、模型的过程与求解
在上下行线的每一个站点,乘客都是随机的到达,按到达时间先后次序排队等车,然后乘客到各自的目的地.影响公交车调度的因素主要有三方面:公交车的数量,乘车的人数以及发车时间间隔.在调度中以汽车的活动为主,同时照顾到乘客与公交公司的双方利益.乘客的利益主要与等待时间有关,等待时间越少,满意度越高,公交公司利益与车辆的满载率以及两个总站车数有关.
从表中可求=14.58公里, =14.61公里, =43.74分钟, =43.83分钟.
根据资料显示的每一个时间段内上车的人数,以及运营调度要求,求所需车辆数.
通过表中资料分析(i=)时组发出的车次不可能进入时组来载客,但可能进入时组.首先考虑沿下行线:在某一时组(i=)内,需要车次来完全载客运输任务.
在时组前j个站点上车总人数:
j=2,3,…13
分别在--时组
显示全部