贵州省2013统计年鉴 2013年贵州省数据统计要领.doc
文本预览下载声明
贵州省2013统计年鉴 2013年贵州省数据统计要领
1、设有一组初始记录关键字序列(K1,K2,…,Kn),要求设计一个算法能够在O(n)的时间复杂度内将线性表划分成两部分,其中左半部分的每个关键字均小于Ki,右半部分的每个关键字均大于等于Ki。
void quickpass(int r[], int s, int t)
{
int i=s, j=t, x=r[s];
while(ilt;j){
while (ilt;j r[j]gt;x) j=j-1; if (ilt;j) {r[i]=r[j];i=i+1;}
while (ilt;j r[i]lt;x) i=i+1; if (ilt;j) {r[j]=r[i];j=j-1;}
}
r[i]=x;
}
2、假设以邻接矩阵作为图的存储结构,编写算法判别在给定的有向图中是否存在一个简单有向回路,若存在,则以顶点序列的方式输出该回路(找到一条即可)。(注:图中不存在顶点到自己的弧)
有向图判断回路要比无向图复杂。利用深度优先遍历,将顶点分成三类:未访问;已访问但其邻接点未访问完;已访问且其邻接点已访问完。下面用0,1,2表示这三种状态。前面已提到,若dfs(v)结束前出现顶点u到v的回边,则图中必有包含顶点v和u的回路。对应程序中v的状态为1,而u是正访问的顶点,若我们找出u的下一邻接点的状态为1,就可以输出回路了。
void Print(int v,int start ) //输出从顶点start开始的回路。
{for(i=1;ilt;=n;i++)
if(g[v][i]!=0 visited[i]==1 ) //若存在边(v,i),且顶点i的状态为1。
{printf(“%d”,v);
if(i==start) printf(“\n”); else Print(i,start);break;}//if
}//Print
void dfs(int v)
{visited[v]=1;
for(j=1;jlt;=n;j++ )
if (g[v][j]!=0) //存在边(v,j)
if (visited[j]!=1) {if (!visited[j]) dfs(j); }//if
else {cycle=1; Print(j,j);}
visited[v]=2;
}//dfs
void find_cycle() //判断是否有回路,有则输出邻接矩阵。visited数组为全局变量。
{for (i=1;ilt;=n;i++) visited[i]=0;
for (i=1;ilt;=n;i++ ) if (!visited[i]) dfs(i);
}//find_cycle
3、假设以I和O分别表示入栈和出栈操作。栈的初态和终态均为空,入栈和出栈的操作序列可表示为仅由I和O组成的序列,称可以操作的序列为合法序列,否则称为非法序列。(15分)
(1)A和D是合法序列,B和C 是非法序列。
(2)设被判定的操作序列已存入一维数组A中。
int Judge(char A[])
//判断字符数组A中的输入输出序列是否是合法序列。如是,返回true,否则返回false。
{i=0; //i为下标。
j=k=0; //j和k分别为I和字母O的的个数。
while(A[i]!=‘\0’) //当未到字符数组尾就作。
{switch(A[i])
{case‘I’: j++; break; //入栈次数增1。
case‘O’: k++; if(kgt;j){printf(“序列非法\n”);exit(0);}
}
i++; //不论A[i]是‘I’或‘O’,指针i均后移。}
if(j!=k) {printf(“序列非法\n”);return(false);}
else {printf(“序列
合法\n”);return(true);}
}//算法结束。
4、设一组有序的记录关键字序列为(13,18,24,35,47,50,62,83,90),查找方法用二分查找,要求计算出查找关键字62时的比较次数并计算出查找成功时的平均查找长度。
5、我们用l代表最长平台的长度,用k指示最长平台在数组b中的起始位置(下标)。用j记住局部平台的起始位置,用i指示扫描b数组的下标,i从0开始,依次和后续元素比较,若局部平台长度(i-j)大于l时,则修改最长平台的长度k(l=i-j)和其在b中的起始位置(k=j),直到b数组结束,l即为所求。
void Platform (int b[ ], int N)
//求具有N个元素的整型数组b中最长平台的长度。
{l=1;k=0;j=0;i=0;
while(ilt;n-1)
{
显示全部