初中数学“问题解决式”教学模式的实践分析研究.doc
文本预览下载声明
初中数学“问题解决式”教学模式的实践研究-中学数学论文
初中数学“问题解决式”教学模式的实践研究
江苏省昆山市亭林中学 拾新柱
【摘要】文章阐述了“问题解决式”教学模式的内涵和操作程序,并结合初中数学新课程教学案例,从启发学生思维、贴近学生“最近发展区”、适合课堂多向交流三个方面探讨了该教学模式中问题设计应遵循的原则,最后对该模式作了一分为二的评价。
关键词 初中数学;问题解决;教学模式
中图分类号:G633.6文献标识码:A文章编号:1671-0568(2015)12-0047-02
《全日制义务教育数学课程标准》从“知识技能、数学思考、问题解决、情感态度”四个维度提出了课程总目标。在“问题解决”这一维度中明确指出:让学生“经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性,掌握分析问题和解决问题的一些基本方法。”据此,笔者在初中数学新课程教学中,就“问题解决式”课堂教学模式进行了持续的探索与实践。
一、“问题解决式”教学模式的内涵
“问题解决式”教学模式即是以问题解决为导向,引导学生将问题情境内化为问题解决这一心理特征,并指导学生探究问题解决的操作(或运算)步骤,通过综合运用数学知识和方法达到问题解决的教学目标。 “问题解决式”教学模式能促进学生独立思考,体会数学的基本思想和思维方式,激发学生创新思维的潜能,从而迁移知识,探究一个新的解决问题的方案。初中数学“问题解决式”教学模式具有教学目标的指向性、操作程序的稳固性和思维活动的深刻性。
二、初中数学“问题解决式”教学模式的操作程序
遵循数学新课标理念和学科教学规律,尊重初中生身心发展特点,依据教育科研控制论和系统论的观点,笔者尝试构建了如下“问题解决式”教学模式的一般操作流程。
三、例谈“问题解决式”教学模式中问题设计的原则
“问题解决式”教学模式的关键是问题串情境的设计与探究,下面结合教学案例来说明问题设置应遵循的一般原则。
1.启发学生思维的原则。
【案例1】七年级《三角形》中角平分线相交所成角的问题探究。
问题1:如图1,已知△ABC中P点是∠ABC和∠ACB的角平分线交点。若∠ABC=50°,∠ACB=80°,则∠P=____。
利用三角形的内角和与角平分线的定义,学生易得∠P=115°
问题2:如图1,已知条件同问题1,若∠A=60°,则∠P=____。
∵∠A=60°,则∠ABC+∠ACB=120°,易得∠PBC+∠PCB=1/2×120°=60°,∴∠P=120°
问题3:如图1,已知条件同问题1,若∠A=α,则∠P=____。
以问题2为基础,学生可得到∠P=90°+1/2α的答案,并归纳得出结论。
这时教师可继续设问:若将条件中的内角平分线改为外角平分线情况又会怎样?并引导学生画图,围绕问题4和5一起讨论解决。
问题4:如图2,已知△ABC中P点是∠ABC和外角∠ACE的平分线交点,若∠A=α,则∠P=____。
问题5:如图3,已知△ABC中P点是外角∠CBF和∠BCE的角平分线交点,若∠A=α,则∠P=____。
【反思】问题解决是一种深度思维活动,问题情境不仅要能激发学生的好奇心,还应联系数学新概念、数学新知识,整合解决问题的方法、途径与策略等。“问题串”间要承前启后,知识点深度适宜,纵横联系严谨有序。案例1不仅激发了学生的求知欲,调动了学生解决问题的积极性,而且两条内角平分线、两条外角平分线、一条内角平分线与一条外角平分线之间的交角的度数与∠A的数量关系系统化,从而巩固、深化了知识系统,培养了学生思维的深刻性。
2.贴近学生“最近发展区”的原则。
【案例2】二次函数的应用问题。
【问题】如图4,在直角三角形AMN内作矩形ABCD,AB和AD分别在两直角边上。设AN=40m,AM=30m,AB=x m,矩形面积为y m2,求y与x间的函数关系式。
分析:大多数学生面对此问题会感到漫无边际,原因是问题的设计没有遵循由易到难、由简到繁,层层递进的教学规律,问题间缺少过渡。该问题中矩形的面积y=AB·AD,而已知条件中却只有AB=x m,这会使学生思维受阻。笔者将原问题改为如下两问:①设AB=x m,试用代数式表示AD边的长度。②设矩形的面积为y m2,求y与x间的函数关系式。用认知理论分析,学生都能想到应用相似知识将线段AD的长用x的式子来表示,教师再引领学生深入思考,即可导出:AD=30-3/4x,进而可顺理成章得到:y=AB·AD=x(30-3/4x)=-3/4x2+30x。
【反思】学生的数学现实与其可能的发展水平间的差距就是最近发展区。数学问题的设置应着眼于学生的最近发展区,为学生提供既有一定难度又能在教师启发下通过合作学习解决的问题,就能充分发挥其思维潜能,挑战困难,超越其最近发展区,并向下一个新的发展区
显示全部