贵州省安顺市2013年中考数学真题试题(解析版).doc
文本预览下载声明
PAGE
PAGE 1
2013年贵州省安顺市中考数学试卷(解析版)
一.选择题(共10小题,每小题3分,满分30分)
1.(2013安顺)计算﹣|﹣3|+1结果正确的是( )
A.4 B.2 C.﹣2 D.﹣4
考点:有理数的加法;绝对值.
分析:首先应根据负数的绝对值是它的相反数,求得|﹣3|=3,再根据有理数的加法法则进行计算即可.
解答:解:﹣|﹣3|+1=﹣3+1=﹣2.
故选C.
点评:此题考查了有理数的加法,用到的知识点是有理数的加法法则、绝对值,理解绝对值的意义,熟悉有理数的加减法法则是解题的关键.
2.(2013安顺)某市在一次扶贫助残活动中,共捐款元,将用科学记数法表示为( )
A.2.58×107元 B.2.58×106元 C.0.258×107元 D.25.8×106
考点:科学记数法—表示较大的数.
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
解答:解:将元用科学记数法表示为:2.58×106元.
故选:B.
点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.(2013安顺)将点A(﹣2,﹣3)向右平移3个单位长度得到点B,则点B所处的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
考点:坐标与图形变化-平移.
分析:先利用平移中点的变化规律求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限.
解答:解:点A(﹣2,﹣3)向右平移3个单位长度,得到点B的坐标为为(1,﹣3),
故点在第四象限.
故选D.
点评:本题考查了图形的平移变换及各象限内点的坐标特点.注意平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
4.(2013安顺)已知关于x的方程x2﹣kx﹣6=0的一个根为x=3,则实数k的值为( )
A.1 B.﹣1 C.2 D.﹣2
考点:一元二次方程的解.
分析:一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.
解答:解:因为x=3是原方程的根,所以将x=3代入原方程,即32﹣3k﹣6=0成立,解得k=1.
故选A.
点评:本题考查的是一元二次方程的根即方程的解的定义.
5.(2013安顺)如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是( )
A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC
考点:全等三角形的判定.
分析:求出AF=CE,再根据全等三角形的判定定理判断即可.
解答:解:∵AE=CF,
∴AE+EF=CF+EF,
∴AF=CE,
A.∵在△ADF和△CBE中
∴△ADF≌△CBE(ASA),正确,故本选项错误;
B.根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选项正确;
C.∵在△ADF和△CBE中
∴△ADF≌△CBE(SAS),正确,故本选项错误;
D.∵AD∥BC,
∴∠A=∠C,
∵在△ADF和△CBE中
∴△ADF≌△CBE(ASA),正确,故本选项错误;
故选B.
点评:本题考查了平行线性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.
6.(2013安顺)如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行( )
A.8米 B.10米 C.12米 D.14米
考点:勾股定理的应用.
专题:应用题.
分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.
解答:解:如图,设大树高为AB=10m,
小树高为CD=4m,
过C点作CE⊥AB于E,则EBDC是矩形,
连接AC,
∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,
在Rt△AEC中,AC==10m,
故选B.
点评:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.
7.(2013安顺)若是反比例函数,则a的取值为( )
A.1 B.﹣l C.±l D.任意实数
考点:反比例函数的定义.
专题:探究型.
分析:先根据反比例函数的定义列出关于a的不等式组,求出a的值即可.
解答:解:∵此函数是反比例函数,
∴,解得a=1.
故选A.
点评:本题
显示全部