激光器的原理与应用.doc
文本预览下载声明
激光器的原理、特点及应用
激光器由工作物质、泵浦源和光学谐振腔三个基本部分构成。其中,工作物质是激光器的核心,是激光器产生光的受激辐射、放大的源泉之所在;泵浦源为在工作物质中实现粒子数反转分布提供所需能源,工作物质类型不同,采用的泵浦方式亦不同;光学谐振腔为激光提供正反馈,同时具有选模的作用,光学谐振腔的参数影响输出激光器的质量。
激光器种类繁多,习惯上主要以以下两种方式划分:一种是按照激光工作物质,一种是按激光工作方式分,下面主要是介绍按照激光工作物质划分来介绍的激光器。
气体激光器(Gas Laser)
气体激光器利用气体或作为工作物质产生激光的器件。它由放电管内的激活气体、一对反射镜构成的谐振腔和激励源等三个主要部分组成。主要激励方式有电激励、气动激励、光激励和化学激励等。其中电激励方式最常用。在适当放电条件下,利用电子碰撞激发和能量转移激发等,气体粒子有选择性地被激发到某高能级上,从而形成与某低能级间的粒子数反转,产生受激发射跃迁。
根据气体工作物质为气体原子、气体分子或气体离子,又可将气体激光器分为原子激光器、分子激光器和离子激光器。
原子激光器中产生激光作用的是未电离的气体原子,激光跃迁发生在气体原子的不同激发态之间。采用的气体主要是氦、氖、氩、氪、氙等惰性气体和铜、锌、锰、铅等金属原子蒸汽。原子激光器的典型代表是He-Ne激光器。He-Ne激光器是最早出现也是最为常见的气体激光器之一。它于1961年由在美国贝尔实验室从事研究工作的伊朗籍学者佳万(Javan)博士及其同事们发明,工作物质为氦、氖两种气体按一定比例的混合物。根据工作条件的不同,可以输出5种不同波长的激光,而最常用的则是波长为632.8纳米的红光。输出功率在0.5~100毫瓦之间,具有非常好的光束质量。氦-氖激光器是当前应用最为广泛的激光器之一,可用于外科医疗、激光美容、建筑测量、准直指示、照排印刷、激光陀螺等。不少中学的实验室也在用它做演示实验
—转能级之间。采用的气体主要有CO2、CO、N2、O2、N2O、H2O、H2等分子气体。分子激光器的典型代表是CO2激光器。
离子激光器中产生激光作用的是已电离的气体离子,激光跃迁发生在气体离子不同的激发态之间。采用的离子气体主要有惰性气体离子、分子气体离子和金属气体离子三类。其典型代表为Ar+激光器。
气体激光器一般采用气体放电激励,还可以采用电子束激励、热激励、化学反应激励等方式。
气体激光器波长覆盖范围主要位于真空紫外至远红外波段,激光谱线上万条,具有输出光束质量高(方向性及单色性好)、连续输出功率大(如CO2激光器)等输出特性,其器件结构简单、造价低廉。
气体激光器广泛应用于工农业生产、国防、科研、医学等领域,如计量、材料加工、激光医疗、激光通信、能源等方面。
固体激光器(Solid—state laser)
固体激光器以固体激光介质为工作物质。1960年,T.H.梅曼发明的红宝石激光器就是固体激光器,也是世界上第一台激光器。固体激光器一般由激光工作物质、激励源、聚光腔、谐振腔反射镜和电源等部分构成。
固体激光器多采用光泵浦,泵浦光源主要有闪光灯和半导体激光二极管两类。
固体激光器波长覆盖范围主要位于可见光至远红外波段,激光谱线数千条,具有输出能量大、运转方式多样等特点。器件结构紧凑,牢固耐用、易于与光纤耦合进行光纤传输。
固体激光器在军事、加工、医疗和科学研究领域有广泛 的用途。它常用于测距、跟踪、制导、打孔、切割和焊接、半导体材料退火、电子器件微加工、大气检测、光谱研究、外科和眼科手术、等离子体诊断、脉冲全息照相以及激光核聚变等方面。固体激光器还用作可调谐染料激光器的激励源。
固体激光器的发展趋势是材料和器件的多样化,包括寻求新波长和工作波长可调谐的新工作物质,提高激光器的转换效率,增大输出功率,改善光束质量,压缩脉冲宽度,提高可靠性和延长工作寿命等。
液体激光器的工作物质分为两类:一类为有机化合物液体(染料),另一类为无机化合物液体。其中染料激光器是液体激光器的典型代表。常用的有机染料有四类:吐吨类染料、香豆素类激光染料、花菁类染料。
染料激光器多采用光泵浦,主要有激光泵浦和闪光灯泵浦两种形式。
液体激光器的波长覆盖范围为紫外到红外波段(321nm~1.168um),通过倍频技术还可以将波长范围扩展至真空紫外波段。激光波长连续可调是染料激光器最重要的输出特性。器件特点是结构简单、价格低廉。染料溶液的稳定性比较差,是这类器件的不足。
染料激光器主要应用于科学研究、医学等领域,如激光光谱光、光化学、同位素分离、光生物学等方面。
半导体激光器(Semiconductor Laser)
半导体激光器也称为半导体激光二极管,或简称激光二极管(Laser Diode,LD)。由于半导体材料本身
显示全部