围护结构隔热形式对室内热稳定性及空调负荷的影响2行政论文.doc
文本预览下载声明
围护结构隔热形式对室内热稳定性及空调负荷的影响2行政论文...
围护结构隔热形式对室内热稳定性及空调负荷的影响
2.隔热形式的选择与房间的空气调节系统运行方式有关
对于外隔热墙体,如果室内侧为体积热容量较大的承重结构,材料蓄热系数大,所以内表面温度波动小,对室温调节避免聚冷聚热有好处,适用于经常使用的房间,但对于一天只有短时间使用的房间,如体育馆、剧院、使用频率比较低的会议室等,在每次使用前临时降温,要求室温能尽快达到要求的标准,这时内隔热便比较有利。所以对于间歇使用的空调房间,围护结构的蓄热性能对房间的热稳定性和空调能耗是起负面作用的,这种情况下,宜采用内隔热,即使采用外隔热,主体结构内侧也宜使用热容量小的轻质材料。因为当长时间不用的房间在启用时,房间的空调冷负荷:q=围护结构的传热负荷+室内人员及设备的散热负荷+围护结构的蓄热负荷+新风负荷。采用内隔热,一方面可以加大墙体的传热热阻,减小围护结构的传热负荷,另一方面,因为隔热层在内侧,对室内的冷量起阻隔作用,减小了因墙体蓄热带来的短时间内的空调冷负荷,从而降低了使用时段内的空调能耗。据有关实验表明 :对长期处于自然条件下隔热层处于不同位置的围护结构的房间进行瞬时初加热,加热热源为散热器(内壁热媒水温为定值)和辅助加热源(电加热器)。在计算中同样引入了热稳定性度时数和围护结构的反应系数,其定义为:热稳定度时数,,其中表示热舒适温度(20 °c),为室内逐时温度,为计算时间间隔,加热周期为一天,这个数据显示了在定义的一个周期内室内空气温度与舒适性温度的差值;定义在加热日建筑围护结构的反应系数为:,其中代表在加热日总的加热量。实验结果表明:隔热层在内部时,房间空气达到舒适性温度的时间最短,并且在电加热器关闭后很长一段时间内室内气温比较稳定;热稳定性度时数(dh)最低,围护结构的反应系数(ber)也最小,说明间歇运行的空调房间,内隔热更有利于室内的热稳定性,空调的负荷也会得到降低,有利于节能。
对于空调系统连续工作的房间,围护结构的蓄热系数大,对室内温度变化的抑制能力就强,有利于房间的热舒适性。此种情况下,墙体宜采用外隔热,这样热容量大的墙体位于室内侧,热容量小的隔热材料位于室外侧。由于隔热层位于外侧,主体材料的温度与室内空气温度接近,这就意味着当负荷不均衡时,可保证室内侧的墙体表面温度不急剧波动,蓄热层吸热或放出能量,朝有利于室内温度保持稳定的方向变化。通过表3的计算结果也可以看出,对于连续运行的空调房间,外隔热墙体的热稳定性度时数(dh)低,墙体的反应系数(ber)也小,说明外隔热更有利于室内空气的热稳定性,如果可以合理利用夜间通风降温,让主体结构白天吸热升温, 夜间放热降温,更有利于降低空调能耗。
3.墙体材料及隔热形式的选择与房间的使用时段有关
围护结构的材料和结构不同时,延迟时间就不同,在设计时,我们可以通过合理设计墙体的结构,控制墙体的温度波延迟时间,让温度波低谷部分传到室内时,房间处于使用时段,当室内壁温度处于高谷时,房间处于间歇时段。比如对于中小学校,房间主要是白天使用,而室外综合温度最高值一般出现在下午2:00~4:00点,如果围护结构的延迟时间可以达到6小时,那么其室内温度高峰期就会出现在晚上8:00~10:00,这样教室在白天的使用时段内,房间的温度就不会太高;再如对于一些居住建筑,一般晚上7:00以后有人在,那么围护结构的延迟时间就应该小一些,如果延迟时间小于3小时,室内温度高峰期就会出现在晚上5:00~7:00以前,这样房间在使用时段内7:00以后就可以避免室内温度太高。
另外,对于完全靠自然通风调节的房间,如果使用时段在白天,总的来说,宜使用重质围护结构,这样可以增强室内空气的稳定性。对于使用时段主要在夜间的房间(如居民住宅),隔热层宜布置在围护结构的内侧。由于绝热材料在内侧,晚间室外温度低于室内温度,室外空气进入室内,室内空气温度下降,墙体内表面的温度迅速下降。如果蓄热材料在内侧,由于白天房间没有空调,室内温度偏高,主体材料温度也高,夜间即使开窗通风调节,墙体的温度也不会迅速下降。
4.围护结构材料及隔热形式的选择与气候特征有关
对于夏热冬冷地区,在夏季,气温的日较差很大,白天温度太高,夜间温度太低,这种情况下,使用重质结构的墙体加外隔热,不仅可以提高室内的热稳定性,而且如果在夜间自然通风利用的好,还可以使空调的能耗得到明显的降低,但对于夏热冬暖地区来说,气温的日较差比较小,夜间室外温度与内侧墙体温度差别不大,所以这种靠夜间自然通风来进行节能调节的效果就不是很明显,对节能来说意义不大。
5.结论
围护结构在传热过程中,墙体是一个被动热源体,对室内的空调负荷起着调节作用,同时也影响了房间的热舒适性。这种调节作用的
显示全部