槽式太阳能光热发电系统设计.docx
文本预览下载声明
【Word版本下载可任意编辑】
PAGE
1 - / NUMPAGES 1
槽式太阳能光热发电系统设计
槽式太阳能热发电概要 槽式太阳能热发电系统全称为槽式抛物面反射镜太阳能热发电系统,是将多个槽型抛物面聚光集热器经过串并联的排列,加热工质,产生高温蒸汽,驱动汽轮机发电机组发电。 槽式太阳能热发电即利用槽式抛物面反射镜开展太阳能热发电。它是将众多的槽型抛物面聚光集热器,经过串并联的排列,从而可以收集较高温度的热能,加热工质产生蒸汽,驱动汽轮发电机组发电。槽式太阳能热发电主要由四部分组成:镜场、换热系统、储热装置和汽轮发电装置等部分组成。 传统的太阳能槽式光热发电系统技术 传统的太阳能槽式光热发电系统技术(如图1),是以导热油为代表的热载体,利用抛物线的光学原理,聚集太阳能,然后将太阳能聚集到集热管上,集热管中的导热油会吸收太阳的能量,导热油会在太阳能集热场的流动过程中,温度从290℃逐渐被加热到390℃,然后流出太阳能集热场。被加热后的高温导热油一部分流入蒸汽发生器与水换热,然后流回太阳能集热场,而换热的水变成375℃的水蒸气推动蒸汽轮机发电;另一部分高温导热油则通过热交换器与熔盐开展换热流回太阳能集热场,而换热后的高温熔盐将储存在高温熔盐罐中,待夜间无***时与导热油换热用于夜间蒸汽汽轮机发电。 新一代的太阳能槽式光热发电系统技术 新一代的太阳能槽式光热发电系统技术(如图2),是以熔盐为代表的热载体,利用抛物线的光学原理,聚集太阳能,然后将太阳能聚集到集热管上,集热管中的熔盐会吸收太阳的能量,熔盐会在太阳能集热场的流动过程中,温度从290℃逐渐被加热到550℃,然后流出太阳能集热场。被加热后的高温熔盐流入储热系统中的高温熔盐储罐中,其中一部分高温熔盐会从高温熔盐储罐中流出在蒸汽发生器与水换热,然后流回储热系统中的低温熔盐储罐中,而换热的水变成375℃的水蒸气推动蒸汽轮机发电;另一部分高温熔盐则留在高温熔盐储存在高温熔盐罐中,待夜间无***时继续输出换热用于夜间蒸汽汽轮机发电。 传统技术和新一代技术的比照 从上面两种技术的论述可以看到,新一代的太阳能槽式光热发电系统技术,主要存在三点不同。 ,新一代技术直接采用了熔盐代替了导热油作为热载体,熔盐的价格一般为导热油的1/6左右,这样使整个电厂的造价大大得到了降低,另外熔盐无爆炸性危险比导热油作为热载体降低了整个太阳能光热电厂的防火防爆等级,减少了事故发生率也减少了电厂管阀件的采购成本。 第二,采用熔盐直接开展储存,省去了二次换热,这样减少了换热损耗,也使系统更为简单。 第三,采用熔盐后,使系统的运行换热区间由290℃-390℃变化到了290℃-550℃,使换热蒸汽问题从375℃提高到了535℃,使蒸汽轮机的热电转化效率大大提高。 槽式太阳能光热发电系统设计 本控制方案是针对**鄂尔多斯50MW槽式太阳能电站设计。采用全厂DCS集中控制方式。DCS作为太阳能电站的控制系统分为太阳能镜场(SF)控制系统、导热油(HTF)系统控制系统、储热(TES)系统控制系统、汽水循环(SG)系统控制系统、T/G岛控制系统及协调控制系统。DCS系统构造如图1所示。 1、总体设计方案 本控制系统针对50MW太阳能电站设计。镜场追日采用主动跟踪太阳位置方式,就地执行机构采用液压式,镜场相关设备与DCS之间采用网络通讯方式。太阳能光热发电的各子系统中装配有温度、流量、压力、转速、图像等各种传感器,当系统运行时,大量连续的、间断的测量数据以及报警信号从各子系统通过网络传输至主控系统,主控系统根据程序预先设定的控制策略开展运算、处理,然后实时发出指令至各控制系统,控制相应设备执行相应动作或提醒操作人员开展人工干预,同时记录和显示相关参数,包括系统管道、仪器、指示阀门的工作状态等。本控制方案的设计只针对太阳能镜场控制、HTF换热油控制、TES储能换热控制。 2、镜场控制系统 太阳能光热发电中的镜场部分主要功能是负责太阳能采集,4个太阳能集热组件(SCA)组成一个回路(LOOP),如图2所示,由156个回路的集合构成太阳集热场区。 镜场的控制主要由通讯控制系统(SCS)及就地控制系统(LOC)两部分构成。其中镜场就地控制系统由LOC(控制系统)和就地液压执行机构两部分构成,本控制方案中LOC控制原理采用主动跟踪,“开环”控制方式。 考虑到镜场系统占地范围广、监视和控制参数多、设备布置分散的特点,对镜场控制系统及导热油循环系统的现场仪表、控制阀门、马达执行器等设备将以网络通的连接方式接入DCS控制系统,能够有效地减少控制电
显示全部