文档详情

电力电子技术和应用论文.docx

发布:2018-09-17约4.26千字共8页下载文档
文本预览下载声明
PAGE \* MERGEFORMAT 8 电力电子技术及应用 引言: 自本世纪五十年代未第一只晶闸管问世以来,电力电子技术开始登上 HYPERLINK /dangdai/ 现代电气传动技术舞台。从工程应用的角度看,无论是电力、机械、矿冶、交通、石油化工、轻纺等传统产业,还是通信、激光、机器人、环保、原子能、航天等高科技产业,都迫切需要提供高质量的电能,特别是要求节能。而电力电子则是实现将各种能源高效率地变换成高质量电能、节能、环保和提高人民生活质量的重要手段,它已经成为弱电控制与强电运行之间,信息技术与先进制造技术之间,传统产业实现自动化、智能化、节能化、机电一体化的桥梁。电力电子的突出特点是高效、节能、省材,所以电力电子已成为我国国民经济的重要基础技术,是现代科学、工业和国防的重要支撑技术。因此,无论上述诸多高技术应用领域,还是各种传统产业,乃至照明、家电等量大面广的,与人民日常生活密切相关的应用领域,电力电子产品已无所不在。 电力电子技术概述 电力电子技术是一门新兴的应用与电力领域的电子技术,就是使用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术。电力电子技术所变换的“电力”功率可大到数百MW甚至GW,也可小至数W甚至1W以下,和以信息处理为主的信息电子技术不同,电力电子技术主要用于电力变换。 电力电子技术分为电力电子器件制造技术和交流技术(整流,逆变,斩波,变频,变相等)两个分支。电力电子技术现已成为现代电气工程与自动化专业的一门专业基础课,在培养该专业人才中占有重要地位。 电力电子学是由电力学、电子学和控制理论三个学科交叉二形成的。其概念的基础就是由于晶闸管和晶闸管变流技术的发展而确立的。电力电子技术的应用范围及其广泛,比如优化电能使用,通过电力电子技术对电能的处理,使电能的使用达到合理、高效和节约,实现了电能使用最佳化;改造传统产业和发展机电一体化等新兴产业,电力电子技术是弱电控制强电的媒体,是机电设备与计算机之间的重要接口,它为传统产业和新兴产业采用微电子技术创造了条件,成为发挥计算机作用的保证和基础;电力电子技术高频化和变频技术的发展,将是机电设备突破工频传统,向高频化方向发展,实现最佳工作效率,将使机电设备的体积减小几倍、几十倍,响应速度达到高速化,并能适应任何基准信号,实现无噪音且具有全新的功能和用途;电力电子智能化的发展,在一定程度上将信息处理与功率处理合一,使微电子技术与电力电子技术一体化,其发展可能引起电子技术的重大改革。 电力电子技术的内容可分为: 电力电子器件; 相控型整流器和有源逆变电路; 直流电压变换电路; 交流 电压变换电路; 电力电子应用技术。 电力电子器件 常用电力电子器件的基本结构、工作原理、外特性、主要参数、开关特性、安全工作区。 根据开关器件是否可控分类 不可控器件:二极管VD。 半控器件:普通晶闸管SCR。 全控器件:GTO、BJT、功率MOSFET、IGBT等。 2. 根据门极(栅极)驱动信号的不同 (1) 电流控制器件 驱动功率大,驱动电路复杂,工作频率低。该类器件有SCR、GTO、BJT。 (2)电压控制器件 驱动功率小,驱动电路简单可靠,工作频率高。该类器件有功率MOSEET、IGBT。 3. 根据载流子参与导电情况之不同,开关器件又可分为单极型器件、双极型器件和复合型器件。 (1) 单极型器件 功率MOSFET 。 (2) 双极型器件 二极管、SCR、GTO、BJT。 (3) 复合型器件IGBT,是电力电子器件发展方向。 电力电子器件中电压,电流额定值从高往低的器件是SCR、GTO、IGBT、BJT和功率MOSFET。工作频率从高往低的器件是功率MOSFET、IGBT、BJT、GTO和SCR 可控整流器与有源逆变器: 主要内容: 整流器的结构形式、工作原理,分析整流器的工作波形,整流器各参数的数学关系和设计方法;整流器工作在逆变状态时的工作原理、工作波形。变压器漏抗对整流器的影响、整流器带电动机负载时的机械特性、触发电路等内容。 学习重点包括: (1) 学习不同型式整流电路的工作原理,波形分析与数值计算、各种负载对整流电路工作情况的影响。 (2) 变压器漏抗对整流电路的影响,重点建立换相压降、换相重叠角等概念,并掌握相关的计算,熟悉漏抗对整流电路工作情况的影响。 (3) 掌握产生有源逆变的条件、逆变失败及最小逆变角的限制等。 (4) 熟悉锯齿波移相触发电路的原理,建立同步的概念,掌握同步电压信号的选取方法。 交-交变换器: 主要内容: 晶闸管单相和三相交流调压器;全控型器件的交流斩波电路;交-交变频器;交-交(AC-AC)变换器的应用。 交流调压电路通常由晶闸管
显示全部
相似文档