2011届高三数学一轮复习函数的图象巩固与练习资料.doc
文本预览下载声明
巩固
1.(2008年高考全国卷Ⅱ)函数f(x)=-x的图象关于( )
A.y轴对称 B.直线y=-x对称
C.坐标原点对称 D.直线y=x对称
解析:选C.∵f(x)的定义域{x∈R|x≠0},关于原点对称,
又f(-x)=-(-x)=-(-x)=-f(x),
∴f(x)是奇函数,其图象关于原点对称.故选C.
2.函数y=ln(1-x)的图象大致为( )
解析:选C.本题中由于我们比较熟悉y=lnx的图象,它的图象是位于y轴右边过点(1,0)且有上升趋势的图象.接着y=ln(-x)的图象是由y=lnx的图象关于y轴翻折到y轴左边所得.再将所翻折图象向右移一个单位即得y=ln[-(x-1)]=ln(1-x)的图象.
3.(原创题)如右图所示,已知圆x2+y2=4,过坐标原点但不与x轴重合的直线l、x轴的正半轴及圆围成了两个区域,它们的面积分别为p和q,则p关于q的函数图象的大致形状为图中的( )
解析:选B.因p+q为定值,故选B.
4.已知下列曲线:
以下编号为①②③④的四个方程:
① -=0;②|x|-|y|=0;③x-|y|=0;④|x|-y=0.
请按曲线A、B、C、D的顺序,依次写出与之对应的方程的编号________.
解析:按图象逐个分析,注意x、y的取值范围.
答案:④②①③
5.设奇函数f(x)的定义域为[-5,5],若当x∈[0,5]时,f(x)的图象如图,则不等式f(x)<0的解集是________.
解析:由奇函数图象的特征可得f(x)在 [-5,5]上的图象.由图象可解出结果.
答案:{x|-2<x<0或2<x≤5}
6.(1)作函数y=|x-x2|的图象;
(2)作函数y=x2-|x|的图象.
解:(1)y=
即y=其图象如图①所示.
(2)y=
即y=其图象如图②所示.
1.有一空容器,由悬在它上方的一根水管均匀地注水,直至把容器注满,在注水过程中水面的高度变化曲线如图所示,其中PQ为一线段,则与此图相对应的容器的形状是( )
解析:选C.由函数图象可判断出该容器必定有不规则形状,再由PQ为直线段,容器上端必是直的一段,故可排除ABD,选C.
2.(2009年高考安徽卷)设a<b,函数y=(x-a)2(x-b)的图象可能是( )
解析:选C.当x>b时,y>0,x<b时,y≤0.故选C.
3.函数y=f(x)的图象如图所示,则函数y=log0.5f(x)的图象大致是( )
解析:选C.由同增异减的单调性原则可得:当x∈(0,1)时y=log0.5f(x)为增函数,且y<0,当x∈(1,2)时y=log0.5f(x)为减函数,且-1<y<0,分析各选项易知只有C符合上述条件.
4.(2009年高考北京卷)为了得到函数y=lg的图象,只需把函数y=lgx的图象上所有的点( )
A.向左平移3个单位长度,再向上平移1个单位长度
B.向右平移3个单位长度,再向上平移1个单位长度
C.向左平移3个单位长度,再向下平移1个单位长度
D.向右平移3个单位长度,再向下平移1个单位长度
解析:选C.∵y=lg=lg(x+3)-1,∴将y=lgx的图象上的点向左平移3个单位长度得到y=lg(x+3)的图象,再将y=lg(x+3)的图象上的点向下平移1个单位长度得到y=lg(x+3)-1的图象.
5.下列函数的图象,经过平移或翻折后不能与函数y=log2x的图象重合的函数是( )
A.y=2x B.y=logx
C.y=·4x D.y=log2+1
解析:选C.y=log2x与y=2x关于y=x对称;y=log2x与y=logx关于x轴对称;而y=log2+1的图象可由y=log2x的图象翻折再平移得到.
6.函数f(x)的图象是两条直线的一部分(如图所示),其定义域为[-1,0)∪(0,1],则不等式f(x)-f(-x)>-1的解集是( )
A.{x|-1≤x≤1且x≠0}
B.{x|-1≤x<0}
C.{x|-1≤x<0或<x≤1}
D.{x|-1≤x<-或0<x≤1}
解析:选D.由图可知,f(x)为奇函数.
∴f(-x)=-f(x),
∴f(x)-f(-x)>-1
2f(x)>-1
f(x)>--1≤x<-或0<x≤1.故选D.
7.如图,函数f(x)的图象是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),则f()的值等于________.
解析:∵f(3)=1,∴=1,
∴f()=f(1)=2.
答案:2
8.函数y=f(x)(x∈[-2,2])的图象如图所示,则f(x)+f(-x)=________.
解析:由图象可知f(x)为定义域上的奇函数.
∴f(x)+f(-x)=f(x)-f(x)=0.
答案:0
9.已知函数f(x)=2-x2,g(x
显示全部