文档详情

锂离子电池固态电解质制备及性能研究【文献综述】.doc

发布:2019-03-27约4.28千字共4页下载文档
文本预览下载声明
锂离子电池固态电解质制备及性能研究 宁波大学材料科学与化学工程学院本科毕业论文 PAGE 4 PAGE 3 文献综述 化学 锂离子电池固态电解质制备及性能研究 锂离子电池具有工作电压高、能量密度高、功率密度高、循环寿命长、自放电率低、可快速充放电、无记忆效应、绿色环保无污染等绝对优点,是当今国际公认的理想化学电源,广泛应用于电子产品、交通工具、军事领域和储能方面[1-3]。目前国内外锂离子二次电池大部分采用的是液态电解质,在生产使用过程中常常遇到一些问题:电解液生产过程中对水分要求十分严格,在电池生产装配过程中对空气湿度也有十分苛刻的要求[4];液态有机电解质可能泄露,部分电解质还对集流体有腐蚀作用,极大限制了锂离子电池向薄层化、小型化的发展趋势;在过高的温度下发生爆炸从而造成安全事故,无法应用在一些对安全性要求高的场合;此外,液态电解质锂离子电池普遍存在循环容量衰减问题,使用一段时间后由于电极活性物质在电解质中的溶解、反应而部分失效。而全固态电池安全性高、基本没有循环容量衰减,固体电解质还起到了隔膜的作用,简化了电池的结构,可以向薄层化和小型化发展;此外,由于无需隔绝空气,也简化了生产过程中对设备的要求,电池的外形设计也更加方便、灵活[1-2, 5]。 全固态锂离子电池分两种[2, 6-10],一种是使用聚合物凝胶电解质;另一种是采用无机固态电解质。聚合物锂离子电解质体系已开展的研究众多,按聚合物主体来分,主要有以下几类:聚醚系(主要为聚氧化乙烯,PEO)、聚丙烯腈(PAN)系、聚甲基丙烯酸酯(PMMA)系、聚偏氟乙烯(PVDF)系和其他类型。尽管聚合物电解质的发展和应用,可以明显克服液态锂离子电池的一些缺点,避免电解液漏液,容易薄层化和小型化,但是仍存在一些问题亟待解决:比如常温下电导率偏低,与电极相容性差,机械强度仍有待提高。此外,聚合物电解质制备工艺复杂、原料价格高导致聚合物电解质价格昂贵。聚合物电解质可通过共聚、交联、形成微孔体系、纳米复合、添加增塑剂等来进行性能改进。未来聚合物电解质的可能朝着两个方向发展:a)交联短链形成网状凝胶结构,增加导电性;b)添加粉末陶瓷,形成有机-无机复合结构,增加机械强度[2, 9-10]。 相对于凝胶聚合物电解质而言,无机固态电解质采用的是无机原料,来源广泛,成本低;热力学稳定性大大改善、机械强度也比聚合物电解质要好很多;能大电流充放电,使用安全性能高;不再使用制备工艺复杂的电解质锂盐诸如LiClO4、LiBF4、LiPF6、LiAsF6等,制备工艺要求与前两种电解质相比,其制备工艺要求简单;电解质可薄层化,同时起到隔膜的作用,极大的简化了电池的结构和工艺。 锂无机固态电解质(ion conductor)又称锂快离子导体(super ion conductor),按其晶体结构分为晶态电解质和非晶态电解质。晶态电解质又称导电陶瓷,目前已研究的有钙钛矿(ABO3)型结构锂离子电解质、NASICON型结构锂离子电解质、LISICON型结构锂离子电解质等;非晶态电解质又称玻璃态电解质,目前已研究的有氧化物玻璃态锂离子电解质、硫化物玻璃态锂离子电解质等[2, 6-8]。其导电机制是,锂无机固态电解质具有载流子,在导电过程中伴随着Li+的迁移,并且导电能力跟温度有密切关系。图1.列举了部分重要的晶态和非晶态无机固态电解质的离子电导率[6]。 图1. 部分重要的晶态和非晶态无机固态电解质的离子电导率的Arrhenius曲线 Fig. 1. Arrhenius plot of ionic conductivity of important crystalline and amorphous inorganic solid lithium ion conductor. NASICON晶体结构 (A =Ge, Ti and Zr)发现于1968年。这个结构被描述成AO6正八面体和PO4正四面体组成的共价键结构[A2P3O12]-,形成3D相互联系通道和两种分布导电离子间隙位置(M·和M··)。导电离子越过瓶颈从一个位置移动到另一个位置,瓶颈的大小取决于两种间隙位置(M·和M··)的骨架离子性质和载体浓度。结果是,NASICON类型化合物的结构和电化学性质随着骨架组成的不同而变化。比如,在化学通式为LiA’IV2-xA’’IVx(PO4)3的化合物,晶胞参数a 和c取决于A’IV和A’’IV阳离子大小。已获得的最小晶胞是。通过三价阳离子(Al, Cr, Ga, Fe, Sc, In, Lu, Y, La)取代八面体中的Ti4+位置,可以提高陶瓷的烧结性能,降低晶粒边界电阻,提高材料的导电性[2, 5-12].。庞明杰,王严杰[11] 等采用传统高温固相法研究了Li3-2x(Al1-xTix)2(PO4
显示全部
相似文档