2014初中数学压轴题及答案.doc
文本预览下载声明
2014初中数学压轴题及答案
篇一:2014-2015年中考数学压轴题精编(试题及答案)
2014年中考数学压轴题精编—人教版篇
1.(人教版)已知:二次函数y=ax+bx-2的图象经过点(1,0),一次函数的图象经过原点和点(1,-b),其中a>b>0且a、b为实数.
(1)求一次函数表达式(用含b的式子表示); (2)试说明:这两个函数的图象交于不同的两点;
(3)设(2)中的两个交点的横坐标分别为x1、x2,求|x1-x2|的范围. 1.解:(1)∵一次函数过原点,∴设一次函数的表达式为y=kx
2
∵一次函数过(1,-b),∴-b=k×1,∴k=-b
∴一次函数的表达式y=-bx ······································································· 3分 (2)∵二次函数y=ax+bx-2的图象经过点(1,0),∴0=a+b-2
2
∴b=2-a ······································································································ 4分
?y=-bx
由? 2
yax+bx-2=?
得ax+2(2-a)x-2=0 ① ······························································ 5分
2
∵△=4(2-a)+8a=4(a-1)+12>0
∴方程①有两个不相等的实数根,∴方程组有两组不同的解
∴这两个函数的图象交于不同的两点 ························································· 6分 (3)∵两交点的横坐标x1、x2分别是方程①的解
∴x1+x2=
22
2(a?2)2a?42
,x1x2=- =aaa
2
2a?42244a2?8a?16
)?4(?)=?1)2?3 ∴|x1-x2|=x1?x2)?4x1x2==2aaaa
(或由求根公式得出)
················································································ 8分 ∵a>b>0,b=2-a,∴1<a<2 令函数y=(∴4<(
24
-1)+3,则当1<a<2时,y随a增大而减小 a
24
-1)+3<12 ················································································· 9分 a
4
∴2<?1)2?3<2
a
∴2<|x1-x2|<2 ···················································································· 10分
2.(人教版)如图,平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA=82cm,OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒2cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1cm的速度匀速运动.设运动时间为t秒.
2014-2015年中考数学压轴题精编—人教版篇
1
(1)用t的式子表示△OPQ的面积S; (2)求证:四边形OPBQ的面积是一个定值,并求出这个定值;
12
(3)当△OPQ与△PAB和△QPB相似时,抛物线y=x+bx+c经过
4
B、P两点,过线段BP上一动点M作y轴的平行线交抛物线于N,当
线段MN的长取最大值时,求直线MN把四边形OPBQ分成两部分的面积之比.
2.解:(1)∵CQ=t,OP=2t,CO=8,∴OQ=8-t
∴S△OPQ=
221
(8-t)22t=-t+42t(0<t<8) ····························· 3分
22
(2)∵S四边形OPBQ=S矩形ABCD-S△PAB -S△CBQ
=8×82-
11
×82t-×8×(82-t)=322 ······························ 5分 22
∴四边形OPBQ的面积为一个定值,且等于322 ··································· 6分
(3)当△OPQ与△PAB和△QPB相似时,△QPB必须是一个直角三角形,依题意只能是∠QPB
=90°
又∵BQ与AO不平行,∴∠QPO不可能等于∠PQB
显示全部