二面角求法及经典题型归纳.doc
文本预览下载声明
PAGE
PAGE 15
二面角求法归纳
18题,通常是立体几何(12-14分),本题考查空间线面平行、线面垂直、面面垂直的判断与证明,考查二面角的求法以及利用向量知识解决几何问题的能力,同时考查空间想象能力、推理论证能力和运算能力。
以下是求二面角的五种方法总结,及题形归纳。
定义法:
从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
本定义为解题提供了添辅助线的一种规律。如例1中从二面角S—AM—B中半平面ABM上的一已知点(B)向棱AM作垂线,得垂足(F);在另一半平面ASM内过该垂足(F)作棱AM的垂线(如GF),这两条垂线(BF、GF)便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。
例1(2009全国卷Ⅰ理)如图,四棱锥中,底面为矩形,底面,
,点M在侧棱上,=60°
(I)证明:M在侧棱的中点
(II)求二面角的大小。
证(I)略
FG解(II):利用二面角的定义。在等边三角形中过点作交于点,则点为AM的中点,过F点在平面ASM内作,GF交AS于G,
F
G
连结AC,∵△ADC≌△ADS,∴AS-AC,且M是SC的中点,
∴AM⊥SC, GF⊥AM,∴GF∥AS,又∵为AM的中点,
∴GF是△AMS的中位线,点G是AS的中点。则即为所求二面角.
∵,则,又∵,∴
∵,∴△是等边三角形,∴
FG在△中,,,,∴
F
G
∴二面角的大小为
例2. (2010全国 = 1 \* ROMAN I理,19题,12分)如图,四棱锥S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC平面SBC .
(Ⅰ)证明:SE=2EB;
(Ⅱ)求二面角A-DE-C的大小 .
(Ⅱ) 由知
.
故为等腰三角形.
取中点F,连接,则.
连接,则.
所以,是二面角的平面角.
连接AG,AG=,,
,
所以,二面角的大小为120°.
例3(2010浙江省理,20题,15分)如图, 在矩形中,点分别
在线段上,.沿直线将
翻折成,使平面.
(Ⅰ)求二面角的余弦值;
(Ⅱ)点分别在线段上,若沿直线将四边形向上翻折,使与重合,求线段的长.
练习(2008山东)如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,,E,F分别是BC, PC的中点.
(Ⅰ)证明:AE⊥PD;
(Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E—AF—C的余弦值.
分析:第1题容易发现,可通过证AE⊥AD后推出AE⊥平面APD,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF上找到可计算二面角的平面角的顶点S,和两边SE与SC,进而计算二面角的余弦值。(答案:二面角的余弦值为)
二、三垂线法
三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P在一个半平面上则通常用三垂线定理法求二面角的大小。
E A B C F E1 A1 B1
E
A
B
C
F
E1
A1
B1
C1
D1
D
例1.(2009山东卷理) 如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB//CD,AB=4, BC=CD=2, AA=2, E、E、F分别是棱AD、AA、AB的中点。
证明:直线EE//平面FCC;
求二面角B-FC-C的余弦值。
证(1)略
解E A B C F E1 A1 B1 C1 D1 D F1 O P (2)因为AB=4, BC=CD=2, 、F是棱AB的中点,所以BF=BC=CF,△BCF为正三角形,取CF的中点O,则OB⊥CF
显示全部