2016年最新[精品文档]025 低温热水地面辐射采暖用定压膨胀水箱选型算法.doc
文本预览下载声明
PAGE
PAGE 1
低温热水地面辐射采暖用定压膨胀水箱
选型算法
德州市建筑规划勘察设计研究院 张鑫 刘绍忠
摘要:从最基本的热水膨胀量计算公式入手推导,结合目前地面辐射采暖的设计习惯,推导并得出符合工程实际应用的低温热水地面辐射采暖用定压膨胀水箱选型计算方法。以此在技术层面上推动膨胀水箱这一结构简单、性能可靠、价格低廉的采暖系统定压设备在崭新的地面辐射采暖形式中的广泛应用。从细节上为建筑设备领域的节能减排提供一点思路。
关键词:低温热水地面辐射采暖 系统定压 膨胀水箱
1 前言
国家相关部门推进建筑节能力度的逐步加大引起了建筑设备专业人员的深入思考:在科技如此发达的今天,建筑设备系统这个建筑耗能大户的节能必须依靠“变频”“数码”这些吸引眼球的字眼吗?我们是不是过分地期盼“COP”“EER”等近乎极限的提高了?节能的技术和措施必须是高科技新技术吗……
在种类繁多的闭式循环水系统定压设备中,一种看似落后的设备——高位膨胀水箱又重新被我们重视起来。比起电接点压力表、变频补水泵、罐式定压补水机组等穿着新技术自动化外衣的定压设备,高位膨胀水箱具有造价低廉、水力稳定性好的优点,其最大的优点是运行费用低,这是由其容积惰性大的结构特性决定的。但其最大的缺点是水箱安放高度需要高出系统最高点,一根定压水管必须穿过重重楼板把最高处的水箱与设备机房的循环水泵吸入口连接,但在大力倡导节能减排的当今社会,付出这点代价取得降低运行费用的目的是值得的。
与早期高位定压膨胀水箱广泛使用的时期相比,新建建筑采暖形式有了很大的变化——在节能政策和新建材、新技术的推动下,采用低品位热能的低温热水地面辐射采暖形式得到广泛应用,特别是居住建筑。翻开新出版的《实用供热空调设计手册(第二版)》(以下称文献[1]),并没有找到适合低温热水地面辐射采暖形式的60℃
2 低温热水地面辐射采暖用定压膨胀水箱计算
查阅文献[2],动力循环供热工程膨胀水箱容积计算公式如式1。
Vp=αΔtmax·Vc 式1
式中:Vp——膨胀水箱有效容积(即信号管到溢流管之间的容积),L;
α ——水的体积膨胀系数,α=0.0006,1/℃;
Vc——系统内的水容量,L;
Δtmax——考虑系统内水受热和冷却时水温最大波动值,一般以20℃
文献[4]规定低温热水地面辐射采暖供水温度不超过60℃。实际工程中,一般按照文献[5][6]采取节能措施的建筑采暖供回水温度一般为45℃~35℃,未采取节能措施的建筑采暖供回水温度一般为55℃~45℃
V=0.015Vc 式2
V=0.021Vc 式3
这样,主要矛盾就集中在系统水容量Vc上了。文献[1]把散热器采暖系统中,管道和散热器水容量换算为供给1kW热量所需的水容量,并将不同型号的散热器水容量制成表格,供设计人员查询使用。低温热水地面辐射采暖系统散热末端设备为敷设于地面垫层的盘管。选型方法采用的是文献[4]提供的单位散热面积,散热盘管的使用量是和埋管面积直接联系的。为适应工程使用,我们也应该把Vc与总热负荷或采暖面积联系起来。
工程上最为常见的地板埋管规格为de20×2.0,其内径为16mm。得出单位管长的水容量为0.201L/m。确定整个工程地埋管道的长度就成为关键问题。下面我们以节能建筑采暖系统为研究对象,推导低温热水地面辐射采暖散热盘管和采暖面积的关系。表1为本文设定的采暖系统标准工作状态参数。
表1:本文研究的地板辐射采暖系统工作状态参数
项目
参数
备注
末端分水器供水温度
45
末端集水器回水温度
35
建筑采暖热指标
32W/㎡
居住建筑
地面材料
水泥、陶瓷等,热阻0.02㎡·K / W
图1:某房间地板平面布置图
图1为A房间地热盘管布置图,地埋盘管布置间距为300mm。我们可以像A房间平面图里那样,假想用300×300mm的方砖满布整个房间,无论管路采用什么形式布置,无论出口方向如何选取,每块方砖中只有一段300mm长管道。这样理论上我们可以认为:,每段300mm长的管道“负担”一块方砖。由此我们得出了管长与采暖面积的理论关系:只要某一房间内各方向管道间距相等,并数值确定,管道长度与房间布管面积之比就接近一个固定的数值,本文称这个比值为管长面积比,用λ表示,量纲为1/m。而且面积越大,实际比值就越接近这个数。如此例中:
理论 m-1
实际 m-1
我们把文献4列出的几种典型间距的管长面积比总结于表2。这也是采暖面积与管长的关系,由式4表示。
表2:典型管间距的管长面积比
管间距(mm)
方砖理论管
显示全部