文档详情

中考数学梯形专题复习(解答题).docx

发布:2018-05-29约字共10页下载文档
文本预览下载声明
-----更多试题资料请关注明师题库(微号:mstiku)更多作文资料请关注明师作文(微号:mszuowen)!----- 中考数学梯形专题复习(解答题) 1. (2014年江苏南京,第19题)如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F. (1)求证:四边形DBFE是平行四边形; (2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么? (第1题图) 考点:三角形的中位线、菱形的判定 分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明; (2)根据邻边相等的平行四边形是菱形证明. (1)证明:∵D、E分别是AB、AC的中点, ∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形; (2)解答:当AB=BC时,四边形DBEF是菱形. 理由如下:∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线, ∴DE=BC,∵AB=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形. 点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键. 2. (2014?乐山,第21题10分)如图,在梯形ABCD中,AD∥BC,∠ADC=90°,∠B=30°,CE⊥AB,垂足为点E.若AD=1,AB=2,求CE的长.[来源:学,科,网] 考点: 直角梯形;矩形的判定与性质;解直角三角形.. 分析: 利用锐角三角函数关系得出BH的长,进而得出BC的长,即可得出CE的长. 解答: 解:过点A作AH⊥BC于H,则AD=HC=1, 在△ABH中,∠B=30°,AB=2, ∴cos30°=, 即BH=ABcos30°=2×=3, ∴BC=BH+BC=4, ∵CE⊥AB, ∴CE=BC=2. 点评: 此题主要考查了锐角三角函数关系应用以及直角三角形中30°所对的边等于斜边的一半等知识,得出BH的长是解题关键. 3. (2014?攀枝花,第19题6分)如图,在梯形OABC中,OC∥AB,OA=CB,点O为坐标原点,且A(2,﹣3),C(0,2). (1)求过点B的双曲线的解析式; (2)若将等腰梯形OABC向右平移5个单位,问平移后的点C是否落在(1)中的双曲线上?并简述理由. 考点: 等腰梯形的性质;反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式;坐标与图形变化-平移. 分析: (1)过点C作CD⊥AB于D,根据等腰梯形的性质和点A的坐标求出CD、BD,然后求出点B的坐标,设双曲线的解析式为y=(k≠0),然后利用待定系数法求反比例函数解析式解答; (2)根据向右平移横坐标加求出平移后的点C的坐标,再根据反比例函数图象上点的坐标特征判断. 解答: 解:(1)如图,过点C作CD⊥AB于D, ∵梯形OABC中,OC∥AB,OA=CB,A(2,﹣3), ∴CD=2,BD=3, ∵C(0,2), ∴点B的坐标为(2,5), 设双曲线的解析式为y=(k≠0), 则=5, 解得k=10, ∴双曲线的解析式为y=; (2)平移后的点C落在(1)中的双曲线上.x k b 1 . c o m 理由如下:点C(0,2)向右平移5个单位后的坐标为(5,2), 当x=5时,y==2, ∴平移后的点C落在(1)中的双曲线上. 点评: 本题考查了等腰梯形的性质,待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,坐标与图形变化﹣平移,熟练掌握等腰梯形的性质并求出点B的坐标是解题的关键. 4. (2014?黑龙江龙东,第26题8分)已知△ABC中,M为BC的中点,直线m绕点A旋转,过B、M、C分别作BD⊥m于D,ME⊥m于E,CF⊥m于F. (1)当直线m经过B点时,如图1,易证EM=CF.(不需证明) (2)当直线m不经过B点,旋转到如图2、图3的位置时,线段BD、ME、CF之间有怎样的数量关系?请直接写出你的猜想,并选择一种情况加以证明. 考点: 旋转的性质;全等三角形的判定与性质;梯形中位线定理.. 分析: (1)利用垂直于同一直线的两条直线平行得出ME∥CF,进而利用中位线的性质得出即可; (2)根据题意得出图2的结论为:ME= (BD+CF),图3的结论为:ME= (CF﹣BD),进而利用△DBM≌△KCM(ASA),即可得出DB=CK DM=MK即可得出答案. 解答: 解:(1)如图1, ∵ME⊥m于E,CF⊥m于F, ∴ME∥CF, ∵M为BC的中点, ∴E为BF中点, ∴ME是△BFC的中位线, ∴EM=CF. (2)图2的结论为:ME=(BD+CF),
显示全部
相似文档