两次相遇行程问题的基本解法.docx
文本预览下载声明
两次相遇行程问题的基本解法 例1.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距B地60千米处相遇。求A、B两地间的路程。 [分析与解]根据题意可画出下面的线段图: 由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地80千米,说明行完一个全程时,甲行了8O千米。两车同时出发同时停止,共行了3个全程,说明两车第二次相遇时甲共行了8×3=240(千米),从图中可以看出来甲车实际行了一个全程多60千米,所以A、B两地间的路程就是: 240-60=180(千米) 例2.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距A地60千米处相遇。求A、B两地间的路程。 [分析与解]根据题意可画出线段图: 由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地8O千米,说明行完一个全程时,甲行了8O千米。两车同时出发同时停止,共行了3个全程。说明两车第二次相遇时甲车共行了:80×3=24O(千米),从图中可以看出来甲车实际行了两个全程少60千米,所以A、B两地间的路程就是: (24O+6O)÷2=150(千米) 可见,解答两次相遇的行程问题的关键就是抓住两次相遇共行三个全程,然后再根据题意抓住第一次相遇点与三个全程的关系即可解答出来。寻找最佳的解题方法有些题目,如果从不同的角度去分析,就会得到不同的解题方法,也就是说从多个角度去想就会有多种解法。这样做可以使思维更开阔,也能从中找到最佳的解题方法。下面的题目就可以用三种方法来解。 例 某建筑工地,第一天用6辆汽车运沙子,共运96吨,第二天用同样的汽车12辆运沙子,第二天比第一天多运多少吨? 解法一:先求一辆汽车一天运沙子的吨数,再求12辆汽车一天运沙子的吨数,减去第一天运的吨数,就得到第二天比第一天多运的吨数。 6÷6×12-96=96(吨) 解法二:先求出12辆是6辆的多少倍,再求12辆汽车每天运的吨数,最后减去6辆汽车每天运的吨数。 96×(12÷6)-96=96(吨) 解法三:先求一辆汽车一天运的吨数,再求第二天比第一天多几辆车,这多的几辆所运的沙子就是第二天比第一天多运的。 96÷6×(12-6)=96(吨) 答:第二天比第一天多运48吨。 你认为哪种算法最好? 我们来看一道题,它可以有五种解法,甚至更多,看完后,请你想一想还有没有别的解法? 例 某饭店买回一桶豆油,连桶称共有210千克,用去一半后,连桶称还有120千克,油桶重多少千克? 解法一:把120千克扩大2倍,得到一桶豆油的重量和两只桶重,从中去掉210千克(这是一桶豆油与一只桶的重量和),即得桶重。 120×2-210=30(千克) 解法二:先求出半桶豆油的重量,再从120千克中去掉这半桶豆油的重量,也可得桶重。 120-(210-120)=30(千克) 解法三:先求出两只桶和两桶油的重量,再求出两只油桶和一桶油的重量,这样可求出一桶油的重量,然后可求出桶重。 210-(210×2-120×2)=30(千克) 解法四:基本上与解法三相同,也可以说是它的简便算法,但算理稍有不同。 210-(210—120)×2=30(千克) 解法五:先求出半只桶重,再求出整个油桶的重量。 (120-210÷2)×2=30(千克) 答:油桶重30千克。 我们再来看一道题:李师傅要加工3080个零件,他用4天加工了280个零件。照这样计算,加工剩下的零件还需要多少天? 解法一:先求每天加工多少个零件和还剩下多少个零件,再求需要加工多少天。 (3080-280)÷(280÷4)=40(天) 解法二:先求每天加工多少个零件,再求加工这批零件一共需要多少天,最后求还需要加工多少天。 3080÷(280÷4)-4=40(天) 解法三:先求这批零件的总数是他4天加工零件的多少倍,再求加工这批零件一共需要多少天,最后求还需要加工多少天。 4×(3080÷280)-4=40(天) 解法四:先求还要加工多少个零件,然后求还加工的零件数是4天加工零件数的多少倍,最后求还需要加工多少天。 4×[(3080-280)÷28] =40(天) 答:加工剩下的零件还需要40天。一道思考题的三种解法题目是这样的:选择+、-、×、÷中的运算符号,把下面各题连成算式,使它们的得数分别等于0、1、2、3、4、5、6、7、8、9。 (1) 2 2222=0 (2) 2 2222=1 (3) 2 2222=2 (4) 2 2222=3 (5) 2 2222=4 (6)
显示全部