2015年基于物联网技术的温室大棚控制系统设计——08电科.doc
文本预览下载声明
基于物联网技术的温室大棚控制系统设计
刘娟
(德州学院物理系,山东德州253023)
AT89S52单片机为核心,采用加热炉和风机、喷灌和渗灌、荧光灯,分别为温室大棚进行加热、增加二氧化碳浓度、增加空气湿度、灌溉、人工补光;使用SHT10数字式温湿度传感器、FDS-100型土壤水分传感器、SH-300-DH二氧化碳传感器和TSL2561光强传感器,将采集在上显示出来,并通通信nRF905将信号传到从机。主机完成预制和报警电路模块功能,从机完成值的功能。
关键词 ;nRF905
1 绪论
Internet of things)便应运而生[1]。简单的说,物联网是物物相连的网络,在整个信息采集、传递、计算的过程中无需人的参与交互。
物联网是基于传感器技术的新型网络技术,在现代农业中,大量的传感器节点构成了一张张功能各异的监控网络,通过各种传感器采集与作物生产有关的各种生产信息和环境参数,可以帮助农民及时发现问题,准确地捕捉发生问题的位置,对耕作、播种、施肥、灌溉等田间作业进行数字化控制,使农业投入品的资源利用精准化、效率最大化[2]。
无线传感网络由部署在监测区域内大量的微型传感器节点通过无线通信形成的一个多跳自组织的网络,其主要目的是采集与处理该网络覆盖范围内监测参数的信息2 系统方案与论证
2.1 方案论
方案一:本系统以AT89S52单片机为核心采用加热炉和风机、喷灌和渗灌和荧光灯分别为温室大棚进行加热、增加空气湿度、灌溉、增加二氧化碳浓度、人工补光采用SHT10数字式温湿度传感器、、SH-300-DH二氧化碳和TSL2561分别检测温室大棚的空气温湿度、土壤湿度、二氧化碳浓度、光照度。数据采集部分使用AT89S52单片机,将随被测变化的电压或电流采集过来,进行数据的处理,在显示电路上,将被测显示出来。主机将采集到值在上显示出来,并通过通信将信号传到从机。此外,主机完成预制和报警电路模块功能,从机完成值的功能。系统的总体结构框图如图21所示
图2.1 系统框图
方案二:本温室大棚控制系统采用MSP430为主控制器用来总体协调控制整个系统,对内部A/D采集的数据进行处理,与内部设定的数据库比较,根据设定的各参数发出指令控制采光、照明、二氧化碳添加、喷淋子系统,来改变大棚内部的环境,利用MSP430来驱动液晶屏,实时地显示大棚内外的各环境参数。本系统采用两块 TMP275 温度传感器,来采集大棚内外的温度值。湿度和光强利用 MSP430内部A/D 通过 P6.0~P6.3 的4个端口进行多通道序列采集。采用TGS4160固态电化学型二氧化碳传感器检测温室大棚中二氧化碳的浓度。系统的体系结构见图2.2。
图2.2 系统框图
方案三:本温室大棚控制系统的核心采用AT89C51单片机;温度传感器采用改进型智能传感器DS18B20;智能湿度传感器采用SHT11;光照度传感器采用GZD-01型光照度感应探头;CO2传感器选用红外线气敏传感器。A/D转换模块采用逐次渐近型8路A/D转换器ADC0809,利用AT89C51单片机的串行I/O口,采用了专用电平转换芯片MAX232,把TTL电平转换成RS232电平,将数据传给上位机( PC机),进行数据的存储。采用液晶显示器(LCD)进行实时显示,系统框图如图2.3所示。
图2.3 系统框图
2.2 方案
方案一使用的控制器为AT89S52单片机AT89S52单片机SHT10数字式温湿度传感器来检测温室大棚中空气的温湿度,方案二选择两块TMP275温度传感器,来采集大棚内外的温度值,方案三选择温度传感器DS18B20采集大棚内的温度。与方案二和方案三的温度传感器相比SHT10数字式温湿度传感器不需外围元件,直接输出经过标定了的相对湿度、温度的数字信号,无需经过AD转换,连接简单,可以有效地解决传统温、湿度传感器的不足。
方案一使用FDS-100型土壤水分传感器检测土壤中水分的含量,方案二的湿度和光强利用MSP430内部A/D通过P6.0~P6.3的4个端口进行多通道序列采集,方案三湿度传感器SHT11测量湿度。与方案二和方案三相比较,方案一的FDS-100型土壤水分传感器是专业检测土壤水分的传感器,检测精度高,能直接稳定地反应各种土壤的真实水分含量,密封性好,可长期埋入土壤中使用,且不受腐蚀。
方案一使用SH-300-DH二氧化碳传感器检测温室大棚中二氧化碳的含量,方案二使用TGS4160固态电化学型二氧化碳传感器检测温室大棚中二氧化碳的浓度,但TGS4160的预热时间较长,一般约为2小
显示全部