2025高考数学二轮专题复习专题三数列微重点1数列的递推关系 .docx
专题三微重点1数列的递推关系
(分值:70分)
一、单项选择题(每小题5分,共20分)
1.(2024·唐山模拟)已知数列{an}满足an+1=an+a1+2n,a10=130,则a1等于()
A.1 B.2
C.3 D.4
2.(2024·合肥模拟)已知数列{an}的前n项和为Sn,首项a1=-1,且满足Sn-1Sn+2=an(n≥2),则S6等于(
A.13 B.3
C.717 D.
3.(2024·西安模拟)若数列{an}满足a1=4,ann=an-1+2n-2n-1(n≥2),则1a1+
A.20212025 B.1012
C.14 D.
4.(2024·衡阳模拟)已知数列{an}满足a1=1,a2=1,an+1=2an+3an-1(n≥2),数列{an}的前n项和为Sn,则S2023等于()
A.32024-12
C.32025-2
二、多项选择题(每小题6分,共12分)
5.已知数列{an}的前n项和为Sn,a1=1,若Sn+1=2Sn+n-1(n∈N*),则下列结论正确的是()
A.数列{Sn+n}为等比数列
B.数列{an}的通项公式为an=2n-1-1
C.数列{an+1}为等比数列
D.数列{2Sn}的前n项和为2n+2-n2-n-4
6.(2024·鹰潭模拟)已知数列{an}满足a1=1,an=a1+12a2+13a3+…+1n-1an-1(n≥2)
A.a2=1 B.ana
C.an=n2 D.an=
三、填空题(每小题5分,共10分)
7.(2024·乐山模拟)在数列{an}中,已知a1=12,(n+2)an+1=nan,则数列{an}的前2024项和S2024=.
8.(2024·茂名模拟)已知Tn为正项数列{an}的前n项的乘积,且a1=2,Tn2=ann+1,则a
四、解答题(共28分)
9.(13分)(2024·绍兴模拟)已知数列{an}的前n项和为Sn,且a1=2,Sn=nn+2an+1,设bn=
(1)求证:数列{bn}为等比数列;(7分)
(2)求数列{Sn}的前n项和Tn.(6分)
10.(15分)(2024·六安模拟)设数列{an}满足a1=3,an+1=3an-4n.
(1)求数列{an}的通项公式;(7分)
(2)若bn=4n2+8n+5anan+1,求数列{bn}
答案精析
1.D2.D3.B4.D5.AD6.AD
7.2024
8.32
解析由Tn2=ann+1
于是an+12=T
则an+1n
又an0,两边取对数得
nlgan+1=(n+1)lgan,
因此lgan+1
所以数列lga
则lgann=lga
即lgan=nlg2=lg2n,
所以an=2n,a5=32.
9.(1)证明因为Sn=nn+2a
=nn+2(Sn+1-Sn
即(n+2)Sn=n(Sn+1-Sn),
即nSn+1=(2n+2)Sn,
则Sn+1n
即bn+1=2bn,又b1=S11=a1
故数列{bn}是以2为首项,2为公比的等比数列.
(2)解由(1)知bn=2n,即Snn=2n,得Sn=n·2
则Tn=1·21+2·22+…+n·2n,
有2Tn=1·22+2·23+…+n·2n+1,
则Tn-2Tn=-Tn
=2+22+23+…+2n-n·2n+1
=2(1-2n)1-2-
=2n+1-2-n·2n+1
=(1-n)2n+1-2,
故Tn=(n-1)2n+1+2.
10.解(1)因为an+1=3an-4n,
设an+1+x(n+1)+y
=3(an+xn+y),①
展开整理,
得an+1=3an+2xn+2y-x,
对照an+1=3an-4n,
可得2x=-4
故①式为an+1-[2(n+1)+1]
=3[an-(2n+1)],
当n=1时,a1-3=0,即数列{an-(2n+1)}是各项为0的常数列,
故an=2n+1.
(2)因为bn=4
=4
=1+12n+1
所以数列{bn}的前n项和Sn=n+13-15+15-17+…+12n