《An.Introduction.to.Machine.Learning.with.Application.in.R》.pdf
文本预览下载声明
M I C H A E L C L A R K
C E N T E R F O R S O C I A L R E S E A R C H
U N I V E R S I T Y O F N O T R E D A M E
A N I N T R O D U C T I O N T O M A C H I N E L E A R N I N G
W I T H A P P L I C AT I O N S I N R
Machine Learning 2
Contents
Preface 5
Introduction: Explanation Prediction 6
Some Terminology 7
Tools You Already Have 7
The Standard Linear Model 7
Logistic Regression 8
Expansions of Those Tools 9
Generalized Linear Models 9
Generalized Additive Models 9
The Loss Function 10
Continuous Outcomes 10
Squared Error 10
Absolute Error 10
Negative Log-likelihood 10
R Example 11
Categorical Outcomes 11
Misclassification 11
Binomial log-likelihood 11
Exponential 12
Hinge Loss 12
Regularization 12
R Example 13
3 Applications in R
Bias-Variance Tradeoff 14
Bias Variance 14
The Tradeoff 15
Diagnosing Bias-Variance Issues Possible Solutions 16
Worst Case Scenario 16
High Variance 16
High Bias 16
Cross-Validation 16
Adding Another Validation Set 17
K-fold Cross-Validation 17
Leave-one-out Cross-Validation 17
Bootstrap 18
Other Stuff 18
Model Assessment Selection 18
Beyond Classification Accuracy: Other Measures of Performance 18
Process Overview 20
Data Preparation 20
Define Data and Data Partitions 20
Feature Scaling 21
Fe
显示全部