单片机课设数字温度计设计资料.doc
文本预览下载声明
1 引言
单片机是指一个集成在一块芯片上的完整计算机系统目前单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹单片机集成度高、体积小、可靠性高控制功能强低电压、低功耗1 、在智能仪器仪表中的应用:在各类仪器仪表中引入单片机,使仪器仪表智能化,提高测试的自动化程度和精度,简化仪器仪表的硬件结构,提高其性能价格比2 、在机电一体化中的应用:机电一体化产品是指集机械、微电子技术、计算机技术于一本,具有智能化特征的电子产品3 、在实时过程控制中的应用:用单片机实时进行数据处理和控制,使系统保持最佳工作状态,提高系统的工作效率和产品的质量4 、在人类生活中的应用:目前国外各种家用电器已普通采用单片机代替传统的控制电路5 、在其它方面的应用:单片机除以上各方面的应用,它还广泛应用于办公自动化领域、商业营销领域、汽车及通信、计算机外部设备、模糊控制等各领域中基本范围-50℃-110℃,精度误差小于0.5DS18B20所测量的温度,超出-50~110℃范围时喇叭报警并且数码管开始闪烁,在温度范围内时喇叭停止报警并且数码管停止闪烁。
2.2 设计思路
AT89C51作为温度测试系统设计的核心器件。该器件是INTEL公司生产的MCS5l系列单片机中的基础产品,采用了可靠的CMOS工艺制造技术,具有高性能的8位单片机,属于标准的MCS51的CMOS产品。-55~128℃,测温分辨率在12位时精度为0.0625℃。DS18B20简化了温度器件与计算机的接口电路,使得电路简单,使用更加方便。
显示部分使用4位LED数码管-50~110℃时,喇叭报警和数码管闪烁来提示。
采用单片机汇编程序语言设计温度计的程序,对DS18B20进行初始化、读、写,读取温度,数据的转换,温度显示和报警处理等等。
3 硬件设计
3.1 AT89C51
图1 AT89C51引脚图
本次设计需要注意的几个端口:
P0口(39—32):是一组8位漏极开路行双向I/O口,也既地址/数据总线复用口。可作为输出口使用时,每位可吸收电流的方式驱动8个TTL逻辑电路,对端口写“1”可作为高阻抗输入输入端用。在访问外部数据存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。在Flash编程时,PO口接收指令字节,而在程序校验时,输出指令字节,校验时,要求接上拉电阻。—17):是一组带有内部上拉电阻的8位双向I/O口,,P1的输入缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对P3口写入“1”时,它们被内部上拉电阻拉高并可作为输出端口。作输出端口时,被外部拉低的P3口将用上拉电阻输出电流。P3口除可作为一般的I/O口线外,更重要的用途是它的第二功能,如所示:
/Vpp(31):内部和外部程序存储器选择线。=0时访问外部ROM 0000H—FFFFH;=1时,地址0000H—0FFFH空间访问内部ROM,地址1000H—FFFFH空间访问外部ROM。本次设计接高电平。
XTAL1(19)和XTAL2(18):使用内部振荡电路时,用来接石英晶体和电容;使用外部时钟时,用来输入时钟脉冲。
RST/VPD(9):复位信号输入端。AT89S51接能电源后,在时钟电路作用下,该脚上出现两个机器周期以上的高电平,使内部复位。第二功能是VPD,即备用电源输入端。当主电源Vcc发生故障,降低到低电平规定值时,VPD将为RAM提供备用电源,发保证存储在RAM中的信号不丢失。
3.2 DS18B20
DS18B20测温原理如图3所示。图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。图中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。
图3 DS18B20测温原理DS18B20测温范围在-55~+125℃转换精度9~12位进制数可编程确定转换的位数测温分辨率为9位精度为0.5℃12位精度为0.0625℃转换时间9位精度为93.75ms、10位精度为187.5 ms、12位精度为750 ms内部有温度上、下限告警设置。DS18B20
图4 DS18B20内部结构
DS18B20功能命令[2]如表1所示:
表1 DS18B20功能命令表
命令 功能描述 代码 CONVERT 启动温度转换 44
显示全部