Advice from Nonadaptive Queries to NP.pdf
文本预览下载声明
[CGH
+
88] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wag-
ner, and G. Wechsung. The boolean hierarchy I: Structural properties. SIAM
Journal on Computing, 17(6):1232{1252, 1988.
[HU79] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.
[KL82] R. Karp and R. Lipton. Turing machines that take advice. LEnseignement
Mathematique, 28:191{209, 1982.
[KSW87] J. Kobler, U. Schoning, and K. Wagner. The dierence and truth-table hierar-
chies of NP. R.A.I.R.O. Informatique theorique et Applications, 21(4):419{435,
1987.
[KT90] J. Kobler and T. Thierauf. Complexity classes with advice. In Proceedings of the
5th Structure in Complexity Theory Conference, pages 305{315. IEEE Computer
Society Press, July 1990. To appear in SIAM Journal on Computing.
[LLS75] R. Ladner, N. Lynch, and A. Selman. A comparison of polynomial time re-
ducibilities. Theoretical Computer Science, 1(2):103{124, 1975.
[Wec85] G. Wechsung. On the boolean closure of NP. In Proceedings of the 5th Confer-
ence on Fundamentals of Computation Theory, pages 485{493. Springer-Verlag
Lecture Notes in Computer Science #199 , 1985. (An unpublished precursor of
this paper was coauthored by K. Wagner).
14
m, Mod
NP[k]
m
functions are less powerful as advice to P evaluators than Mod
NP[k]
2
functions,
unless the boolean hierarchy collapses.
Theorem 4.6 Let m 2 be odd and k 0. Then P==Mod
NP[k]
m
= P==Mod
NP[k bk=mc]
2
.
Proof. Given Theorems 4.4 and 3.1, it suces to prove P==Mod
NP[k]
m
P==#
NP[k bk=mc]
.
Let L 2 P==Mod
NP[k]
m
via a function f 2 Mod
NP[k]
m
and a set B 2 P. Let f
1
; . . . ; f
k
be FP
functions such that for all x 2
, f(x) = SAT(f
1
(x)) + + SAT(f
k
(x)) (mod m). For
i = 1; . . . ; k, we dene the NP sets
A
i
= f x j at least i of f
1
(x); . . . ; f
k
(x) are in SAT g
and let h
i
be a many-one reduction from A
i
to SAT. Then f(x) = SAT(h
1
(x)) + +
SAT(h
k
(x)) (mod m). Since the sets A
i
form
显示全部