基于MapReduce的蚁群算法[]-大数据文档资料.pptx
文章编号:1006-5911(2012)07-1503-07
基于MapReduce的蚁群算法
吴昊1,2,倪志伟1,2,王会颖1,2,3+
(1.合肥工业大学管理学院,安徽合肥230009;
2.合肥工业大学教育部过程优化与智能决策重点实验室,安徽合肥230009;
3.安徽财贸职业学院电子信息系,安徽合肥230601)
摘要:云计算环境下应用蚁群算法分布式并行对问题进行求解的研究较少,且蚁群算法存在搜索时间长和易收敛于非最优解的缺陷,当问题的规模较大时求解困难。为此应用云计算技术将蚁群算法并行化,提出基于MapReduce的蚁群算法。该算法将分治思想和模拟退火算法融入蚁群算法,改进其缺陷,并应用于求解较大规模的旅行商问题。仿真实验取得了较好的效果,且获得了测试实例gr666的新解。
关键词:云制造;云计算;蚁群算法;分治;模拟退火算法;旅行商问题
中图分类号:TP301文献标志码:A
MapReduce-basedantcolonyoptimization
WUHao1,2,NIZhi-wei1,2,WANGHui-ying1,2,3+
(1.SchoolofManagement,HefeiUniversityofTechnology,Hefei230009,China;
2.KeyLaboratoryofProcessOptimizationandIntelligentDecision-making,MinistryofEducation,
HefeiUniversityofTechnology,Hefei230009,China;
3.DepartmentofElectronicsandInformation,AnhuiFinanceTradeVocationalCollege,Hefei230601,China)Abstract:TheresearchesonsolvingproblemswithAntColonyOptimization(ACO)distributedparallelundercloudcomputingwereless,andACOhaddefectsinlongsearchtimeandconvergenceinnon-optimalsolution.Whenthescaleofproblemwaslarge,itwastoohardtosolve.Therefore,MapReduce-basedACOwasproposedbyusingcloudcomputingtoparallelACO.Inthisalgorithm,dividingconquerandsimulatedannealingalgorithmweremer-gedintoACOtoimprovethedefects.Itwasalsoappliedtosolvelarge-scaleofTravelingSalesmanProblem(TSP).Thesimulationexperimentgotawelleffectandthenewsolutionsoftestgr666wereobtained.
Keywords:cloudmanufacturing;cloudcomputing;antcolonyoptimization;divideconquer;simulatedannealingal-gorithm;travelingsalesmanproblem
收稿日期:2012-01-18;修订日期:2012-04-14。Received18Jan.2012;accepted14Apr.2012.
基金项目:国家863计划资助项目(2011AA040501);国家社会科学基金资助项目(10CGL024);安徽省教育厅自然科学重点资助项目(KJ2011A006)。Founda