吸附干燥器的设计.doc
文本预览下载声明
吸附干燥器的设计
吴彦敏 , 《气体纯化》 , 1983年6月第1版 2.根据间歇工作或连续工作方式选择
如果吸附干燥器可以间歇工作,则只需采用一个吸附干燥器,根据气体处理量和间歇工作的周期确定吸附剂用量。如果吸附干燥器需要连续工作,可用二个吸附干燥器交替工作(即一个吸附于燥器工作,另一个再生)。按气体的处理量、含水量、再生加热和冷却所需时间,确定吸附剂用量和切换周期。
3.根据吸附干燥器再生加热方法选择
小型吸附干燥器可用电阻加热器直接加热、减压再生。气体处理量较大时吸附干燥器大都采用载热气体加热再生。用载热气体加热再生的工艺流程如下:
1)循环气体再生 如图7-19所示,用气体循环泵2把循环气送入电加热器5加热后,进入吸附干燥器进行再生处理。再生气体通过水冷却器3冷却干燥,使气体能循环使用。此种再生工艺流程,常用于常压吸附干燥装置的再生。由于再生气含水量较高吸附剂再生的残余含水量亦较高。
2)部分产品气再生 如图7-20所示,用部分干燥的产品气通过电加热器送入吸附干燥器进行再生处理。然后,再生气体返回原料气罐或放空。此种再生工艺流程适用于压力吸附干燥器。当再生气体出口的压力大于原料气罐中原料气体的压力时,再生气体才能返回原料气罐。吸附干燥器处理的气体量,应相当于所需纯化干燥的气体量加上再生气用量。
3)部分原料气再生 如图7-21所示,部分原料气经辅助干燥器5吸附干燥.经电加热器6加热后,经四通阀8送吸附干燥器7进行再生处理。再生气经四通阀4、冷却器3和气水分离器2后,与经减压阀1的原料气重新汇合一起进入吸附干燥器9。此法适用于压力纯化干燥装置,采用减压阀1进行调节使减压阀前后压力差大于再生气体通过四通阀、辅助干燥器、电加热器、吸附干燥器和水冷却器等所产生的压力降。才能使再生气与原料气重新汇合。由于再生时不采用气体循环泵,故维护、操作简单、安全可靠。
4.根据吸附剂再生后冷却方法选择
采用自然冷却的方法最为简单,但冷却时间较长。采用强制气流冷却,必须严格控制强制气流的干燥度。否则吸附剂在吹冷过程中会因吸湿而影响吸附干燥器的干燥效果。
(二)变温吸附干燥器的工艺计算
吸附干燥器的工艺计算可根据气体的处理量、初始含水量、气体要求的干燥程度和所选用的吸附剂的吸附容量进行计算,求出所需吸附剂的用量,再确定吸附干燥器结构尺寸。
1.吸附剂动态吸附量
吸附剂的吸附容量值,严格来说,应在动态条件下试验测得吸附转效值。
如图7-22所示采用吸附柱长l000毫米入口气体温度为25℃,气体相对湿度为10%,气体线速度为0.5m/s。试验测得5A分子筛吸附转效点的吸附量为15%,气体干燥度为露点-96℃。硅胶的吸附转效点吸附量为8%,气体干燥度露点-68℃。活性氧化铝的吸附转效点吸附量为12%,气体干燥度据点-75℃。
吸附剂的动态吸附量和气体干燥度,与下列因素有关:
1)与吸附剂床层高度有关(更确切地说,应和气体与吸附剂接触时间或空间、速度有关)。表7-5列出吸附干燥器高度不同时的数据,由表可知,随着吸附柱高度增加,气体与吸附剂接触时间增加,吸附容量的变化不大,气体干燥度有比较明显的提高。
表7-5所得数据的试验条件是吸附剂柱高16cm,内径2cm,温度15℃,采用的吸附剂为5A分于筛28g(37.5ml),气体速度3.8cm/s。
3)与吸附温度有关。表7-7列出吸附温度不同时的数据,其试验条件是吸附剂柱高16cm,内径2cm,吸附剂采用5A分子筛28g(37.5ml),入口气体的露点10℃,气体速度3.8cm/s。
由表7-7可讯吸附温度降低有利于吸附容量的增加。
4)与气体速度有关。表7-8为气体速度不同时通过试验所得的数据。试验的条件是吸附剂拄高14cm,内径3cm,温度50℃,吸附剂采用分子筛60克(74毫升),入口气体露点13℃。
由表7-8可知,气体速度越小,气体干燥度高。
5)与吸附剂再生程度有关。吸附剂的再生程度,主要决定于再生气体的干燥度和再生温度。如图7-23~图7-25所示。
由图7-23~图7-25可见,再生温度高有利于再生完全但温度过高,容易给操作带来困难使吸附剂使用寿命缩短,甚至烧坏。如果再生气体的露点低,也有利于再生的完全性,并可降低再生温度。吸附剂再生越完全,残余水分含量越低。气体干燥度越高.如分子筛完全再全,残余水含量达到0%,0℃时,水汽的平衡分压力1.74×10-5毫米汞拄,气体的露点可达-96℃。
吸附干燥器在常压操作情况下,工艺计算的数据选择,可参考表7-9。
(三)变温吸附干燥器的结构设讨
吸附干燥器的结构与催
显示全部