2024届浙江“七彩阳光”新高三下学期第五次调研考试数学试题含解析.doc
2024届浙江“七彩阳光”新高三下学期第五次调研考试数学试题
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知,,,,则()
A. B. C. D.
2.命题“”的否定是()
A. B.
C. D.
3.已知集合,则等于()
A. B. C. D.
4.函数的定义域为()
A. B. C. D.
5.已知正项等比数列满足,若存在两项,,使得,则的最小值为().
A.16 B. C.5 D.4
6.已知抛物线的焦点为,过点的直线与抛物线交于,两点(设点位于第一象限),过点,分别作抛物线的准线的垂线,垂足分别为点,,抛物线的准线交轴于点,若,则直线的斜率为
A.1 B. C. D.
7.已知集合,,则=()
A. B. C. D.
8.抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是()
A. B. C. D.
9.已知,为两条不同直线,,,为三个不同平面,下列命题:①若,,则;②若,,则;③若,,则;④若,,则.其中正确命题序号为()
A.②③ B.②③④ C.①④ D.①②③
10.设,则,则()
A. B. C. D.
11.关于函数,有下述三个结论:
①函数的一个周期为;
②函数在上单调递增;
③函数的值域为.
其中所有正确结论的编号是()
A.①② B.② C.②③ D.③
12.在复平面内,复数(为虚数单位)对应的点位于()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
二、填空题:本题共4小题,每小题5分,共20分。
13.设数列的前项和为,且对任意正整数,都有,则___
14.函数在区间内有且仅有两个零点,则实数的取值范围是_____.
15.二项式的展开式中所有项的二项式系数之和是64,则展开式中的常数项为______.
16.设,则_____,
(的值为______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)选修4-5:不等式选讲
设函数.
(1)当时,求不等式的解集;
(2)若在上恒成立,求实数的取值范围.
18.(12分)如图,已知抛物线:与圆:()相交于,,,四个点,
(1)求的取值范围;
(2)设四边形的面积为,当最大时,求直线与直线的交点的坐标.
19.(12分)改革开放年,我国经济取得飞速发展,城市汽车保有量在不断增加,人们的交通安全意识也需要不断加强.为了解某城市不同性别驾驶员的交通安全意识,某小组利用假期进行一次全市驾驶员交通安全意识调查.随机抽取男女驾驶员各人,进行问卷测评,所得分数的频率分布直方图如图所示在分以上为交通安全意识强.
求的值,并估计该城市驾驶员交通安全意识强的概率;
已知交通安全意识强的样本中男女比例为,完成下列列联表,并判断有多大把握认为交通安全意识与性别有关;
安全意识强
安全意识不强
合计
男性
女性
合计
用分层抽样的方式从得分在分以下的样本中抽取人,再从人中随机选取人对未来一年内的交通违章情况进行跟踪调查,求至少有人得分低于分的概率.
附:其中
20.(12分)已知函数.
(Ⅰ)若是第二象限角,且,求的值;
(Ⅱ)求函数的定义域和值域.
21.(12分)在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程与曲线的直角坐标方程;
(2)设为曲线上位于第一,二象限的两个动点,且,射线交曲线分别于,求面积的最小值,并求此时四边形的面积.
22.(10分)已知在四棱锥中,平面,,在四边形中,,,,为的中点,连接,为的中点,连接.
(1)求证:.
(2)求二面角的余弦值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【解析】
令,求,利用导数判断函数为单调递增,从而可得,设,利用导数证出为单调递减函数,从而证出,即可得到答案.
【详解】
时,
令,求导
,,故单调递增:
∴,
当,设,
,
又,
,即,
故.
故选:D
【点睛】
本题考查了作差法比较大小,考查了构造函数法,利用导数判断式子的大小,属于中档题.
2、D
【解析】
根据全称命题的否定是特称命题,对命题进行改写即可.