湖南省衡阳市衡阳县第三中学2023-2024学年高三考前热身数学试卷含解析.doc
湖南省衡阳市衡阳县第三中学2023-2024学年高三考前热身数学试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用,化简,得.设勾股形中勾股比为,若向弦图内随机抛掷颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为()
A. B. C. D.
2.若函数的图象向右平移个单位长度得到函数的图象,若函数在区间上单调递增,则的最大值为().
A. B. C. D.
3.已知,若则实数的取值范围是()
A. B. C. D.
4.已知实数x,y满足,则的最小值等于()
A. B. C. D.
5.已知椭圆的左、右焦点分别为、,过点的直线与椭圆交于、两点.若的内切圆与线段在其中点处相切,与相切于点,则椭圆的离心率为()
A. B. C. D.
6.曲线上任意一点处的切线斜率的最小值为()
A.3 B.2 C. D.1
7.若双曲线的离心率,则该双曲线的焦点到其渐近线的距离为()
A. B.2 C. D.1
8.已知正四棱锥的侧棱长与底面边长都相等,是的中点,则所成的角的余弦值为()
A. B. C. D.
9.某几何体的三视图如图所示,则该几何体的体积为()
A. B. C. D.
10.某空间几何体的三视图如图所示(图中小正方形的边长为1),则这个几何体的体积是()
A. B. C.16 D.32
11.定义在R上的函数,,若在区间上为增函数,且存在,使得.则下列不等式不一定成立的是()
A. B.
C. D.
12.已知l,m是两条不同的直线,m⊥平面α,则“”是“l⊥m”的()
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
二、填空题:本题共4小题,每小题5分,共20分。
13.在中,、的坐标分别为,,且满足,为坐标原点,若点的坐标为,则的取值范围为__________.
14.已知是定义在上的偶函数,其导函数为.若时,,则不等式的解集是___________.
15.设数列的前项和为,且对任意正整数,都有,则___
16.已知数列递增的等比数列,若,,则______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在中,角A,B,C的对边分别为a,b,c,且.
(1)求B;
(2)若的面积为,周长为8,求b.
18.(12分)这次新冠肺炎疫情,是新中国成立以来在我国发生的传播速度最快、感染范围最广、防控难度最大的一次重大突发公共卫生事件.中华民族历史上经历过很多磨难,但从来没有被压垮过,而是愈挫愈勇,不断在磨难中成长,从磨难中奋起.在这次疫情中,全国人民展现出既有责任担当之勇、又有科学防控之智.某校高三学生也展开了对这次疫情的研究,一名同学在数据统计中发现,从2020年2月1日至2月7日期间,日期和全国累计报告确诊病例数量(单位:万人)之间的关系如下表:
日期
1
2
3
4
5
6
7
全国累计报告确诊病例数量(万人)
1.4
1.7
2.0
2.4
2.8
3.1
3.5
(1)根据表中的数据,运用相关系数进行分析说明,是否可以用线性回归模型拟合与的关系?
(2)求出关于的线性回归方程(系数精确到0.01).并预测2月10日全国累计报告确诊病例数.
参考数据:,,,.
参考公式:相关系数
回归方程中斜率和截距的最小二乘估计公式分别为:
,.
19.(12分)已知函数的最大值为2.
(Ⅰ)求函数在上的单调递减区间;
(Ⅱ)中,,角所对的边分别是,且,求的面积.
20.(12分)为了解本学期学生参加公益劳动的情况,某校从初高中学生中抽取100名学生,收集了他们参加公益劳动时间(单位:小时)的数据,绘制图表的一部分如表.
(1)从男生中随机抽取一人,抽到的男生参加公益劳动时间在的概率:
(2)从参加公益劳动时间的学生中抽取3人进行面谈,记为抽到高中的人数,求的分布列;
(3)当时,高中生和初中生相比,那学段学生平均参加公益劳动时间较长.(直接写出结果)
21.(12分)如图,在四棱锥中,底