基于YOLOv7算法的喷漆表面缺陷智能识别研究.docx
基于YOLOv7算法的喷漆表面缺陷智能识别研究
目录
内容概括................................................3
1.1研究背景与意义.........................................3
1.2研究目标与内容.........................................4
1.3国内外研究现状.........................................6
1.4论文结构安排...........................................8
相关工作综述............................................9
2.1喷漆表面缺陷定义......................................10
2.2表面缺陷检测技术概述..................................10
2.3传统检测方法分析......................................12
2.4YOLOv7算法介绍........................................13
2.5现有研究存在的问题....................................14
YOLOv7算法概述.........................................15
3.1YOLOv7算法原理........................................16
3.2YOLOv7算法特点........................................16
3.3YOLOv7算法应用场景....................................18
3.4与其他算法的比较......................................19
喷漆表面缺陷图像预处理.................................21
4.1图像采集设备选择......................................22
4.2图像预处理流程........................................23
4.3数据增强技术应用......................................24
4.4实验环境搭建..........................................27
喷漆表面缺陷特征提取...................................27
5.1颜色特征提取方法......................................28
5.2纹理特征提取方法......................................30
5.3形状特征提取方法......................................30
5.4边缘特征提取方法......................................31
基于YOLOv7算法的缺陷识别模型设计.......................33
6.1模型架构设计..........................................34
6.2网络层设计............................................35
6.3损失函数与优化器选择..................................36
6.4模型训练与验证........................................37
实验结果与分析.........................................38
7.1实验数据集说明........................................39
7.2实验方法与步骤........................................39
7.3实验结果展示..........................................40
7.4结果分析与讨论........................................41
结果评估与优化.........................................42
8.1评价