文档详情

科技英语罗素悖论-译文习题.doc

发布:2017-05-15约1.61千字共3页下载文档
文本预览下载声明
罗素悖论 罗素悖论的提出是基于这样的一个事例:设想有这样一群理发师,他们只给不给自己理发的人理发。假设其中一个理发师符合上述的条件,不给自己理发;然而按照要求,他必须要给自己理发。但是在这个集合中没有人会给自己理发。(如果这样的话,这个理发师必定是给别人理发还要给自己理发) 1901年,伯特兰·罗素悖论的发现打击了他其中的一个数学家同事。在19世纪后期,弗雷格尝试发展一个基本原理以便数学上能使用符号逻辑。他确立了形式表达式(如:x =2)和数学特性(如偶数)之间的联系。按照弗雷格理论的发展,我们能自由的用一个特性去定义更多更深远的特性。 1903年,发表在《数学原理》上的罗素悖论从根本上揭示了弗雷格这种集合系统的局限性。就现在而言,这种类型的集合系统能很好的用俗称集的结构式来描述。例如,我们可以用 x代表整数,通过n来表示并且n大于3小于7,来表示4,5,6这样一个集合。这种集合的书写形势就是:x={n:n是整数,3n7}。集合中的对象并不一定是数字。我们也可让y={x:x是美国的一个男性居民}。 表面上看,似乎任何一个关于x的描述都有一个符合要求的空间。但是,罗素(和策梅洛一起)发现x={a:a不再a中}导致一个矛盾,就像对一群理发师的描述一样。x它本身是在x的集合中吗?否定的答案导致了矛盾的出现。 当罗素发现了悖论,弗雷格立即就发现悖论对他的理论有致命的打击。尽管这样,他还不能解决这个问题,并且上世纪有很多的尝试去解决这个问题(但没有成功)。 罗素自己对这个悖论的回答促进了类型理论的形成。他解释说,悖论的问题在于我们混淆了数集和数集的集合。所以,罗素介绍了对象的分级系统:数、数集、数集的集合等等。这个系统为形式化数学的形成奠定了基础,至今它还应用于哲学研究和计算机科学分支。 策梅洛对于罗素悖论的解决方法用新的公理:对于任意公式A(x)和任意集合b,都会有一个集合满足y={x:x既在b中又满足A(x)}取代了以前的公理:对于任意公式A(x),都会有一个集合满足y={x:x满足A(x)}。 究竟是什么样的努力使数学逻辑基础得以发展?现在数学家认识到这个领域可以用所谓的策梅洛-弗兰克尔集合论来定义。形式化的语言包含符号,例如e表示“其中一个数”,=表示等于,□代表集合中没有任何元素。那么可以写下一个公式B(x):如果如果y e x,而y是空集。在集的结构式中我们可以这样书写:y={x:x=□},或者更简单y={□}。罗素悖论就成这样:y={x:x不在x中},那么y是否在y中? 罗素和弗雷格关于罗素悖论发现的通信可以在《从弗雷格到高德尔,数学逻辑起源》(1879-1931)中查看到。这本书由哈佛大学出版社 Jean Van Heijenoort 1967年编辑出版。 习题 Reading Comprehension 3、puzzle theory axiom demonstrates description hierarchy mathematician solution fundamental formalizations Vocabulary and Structure discovery correspondence logical symboled contradiction formal description equality developed unable based on definition of deal a blow to in terms of leaded to as the way in the form of servr as become of replace by Discourse Understanding C E G A F
显示全部
相似文档