文档详情

平方差公式练习题2017.doc

发布:2018-10-12约3.84千字共7页下载文档
文本预览下载声明
平方差公式lianxitimu A卷:基础题 一、选择题 1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示( ) A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以 2.下列多项式的乘法中,可以用平方差公式计算的是( C ) A.(a+b)(b+a) B.(-a+b)(a-b) C.(a+b)(b-a) D.(a2-b)(b2+a) 3.下列计算中,错误的有( ) ①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2; ③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2. A.1个 B.2个 C.3个 D.4个 4.若x2-y2=30,且x-y=-5,则x+y的值是( ) A.5 B.6 C.-6 D.-5 二、填空题 5.(-2x+y)(-2x-y)=______. 6.(-3x2+2y2)(______)=9x4-4y4. 7.(a+b-1)(a-b+1)=(_____)2-(_____)2. 8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____. 三、计算题 9.利用平方差公式计算:20×19. =(20+)×(20---) =400—5/9 =399 4/9 10.计算:(a+2)(a2+4)(a4+16)(a-2). =(a+2)(a-2(a2+4)(a4+16)) =(a2-4)(a2+4)(a4+16) =(a4-16)(a4+16) =a8--256 B卷:提高题 一、七彩题 1.(多题-思路题)计算: (1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数); (2)(3+1)(32+1)(34+1)…(32008+1)-. 2.(一题多变题)利用平方差公式计算:2009×2007-20082. (1)一变:利用平方差公式计算:. (2)二变:利用平方差公式计算:=. 二、知识交叉题 3.(科内交叉题)解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3). 三、实际应用题 4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3 (2a+3)(2a-3)=4 a2-9 四、经典中考题 5.(2007,泰安,3分)下列运算正确的是(D ) A.a3+a3=3a6 B.(-a)3·(-a)5=-a8 C.(-2a2b)·4a=-24a6b3 D.(-a-4b)(a-4b)=16b2-a2 6.(2008,海南,3分)计算:(a+1)(a-1)=__ a2-1____. C卷:课标新型题 1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3, (1-x)(1+x+x2+x3)=1-x4. (1)观察以上各式并猜想:(1-x)(1+x+x2+…+xn)=______.(n为正整数) (2)根据你的猜想计算: ①(1-2)(1+2+22+23+24+25)=______. ②2+22+23+…+2n=______(n为正整数). ③(x-1)(x99+x98+x97+…+x2+x+1)=_______. (3)通过以上规律请你进行下面的探索: ①(a-b)(a+b)=_______. ②(a-b)(a2+ab+b2)=______. ③(a-b)(a3+a2b+ab2+b3)=______. 2.(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4. 3.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下. 参考答案 A卷 一、1.D 2.C 点拨:一个算式能否用平方差公式计算,关键要看这个算式是不是两个数的和与这两个数的差相乘的形式,选项A,B,D都不符合平方差公式的结构特征,只有选项C可以用平方差公式计算,故选C. 3.D 点拨:①(3a+4)(3a-4)=(3a)2-42=9a2-16, ②(2a2-b)(2a2+b)=(2a2)2-b2=4a4-b2,③
显示全部
相似文档