平方差公式练习题2017.doc
文本预览下载声明
平方差公式lianxitimu
A卷:基础题
一、选择题
1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示( )
A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以
2.下列多项式的乘法中,可以用平方差公式计算的是( C )
A.(a+b)(b+a) B.(-a+b)(a-b)
C.(a+b)(b-a) D.(a2-b)(b2+a)
3.下列计算中,错误的有( )
①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;
③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.
A.1个 B.2个 C.3个 D.4个
4.若x2-y2=30,且x-y=-5,则x+y的值是( )
A.5 B.6 C.-6 D.-5
二、填空题
5.(-2x+y)(-2x-y)=______.
6.(-3x2+2y2)(______)=9x4-4y4.
7.(a+b-1)(a-b+1)=(_____)2-(_____)2.
8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.
三、计算题
9.利用平方差公式计算:20×19.
=(20+)×(20---)
=400—5/9
=399 4/9
10.计算:(a+2)(a2+4)(a4+16)(a-2).
=(a+2)(a-2(a2+4)(a4+16))
=(a2-4)(a2+4)(a4+16)
=(a4-16)(a4+16)
=a8--256
B卷:提高题
一、七彩题
1.(多题-思路题)计算:
(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);
(2)(3+1)(32+1)(34+1)…(32008+1)-.
2.(一题多变题)利用平方差公式计算:2009×2007-20082.
(1)一变:利用平方差公式计算:.
(2)二变:利用平方差公式计算:=.
二、知识交叉题
3.(科内交叉题)解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).
三、实际应用题
4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3
(2a+3)(2a-3)=4 a2-9
四、经典中考题
5.(2007,泰安,3分)下列运算正确的是(D )
A.a3+a3=3a6 B.(-a)3·(-a)5=-a8
C.(-2a2b)·4a=-24a6b3 D.(-a-4b)(a-4b)=16b2-a2
6.(2008,海南,3分)计算:(a+1)(a-1)=__ a2-1____.
C卷:课标新型题
1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,
(1-x)(1+x+x2+x3)=1-x4.
(1)观察以上各式并猜想:(1-x)(1+x+x2+…+xn)=______.(n为正整数)
(2)根据你的猜想计算:
①(1-2)(1+2+22+23+24+25)=______.
②2+22+23+…+2n=______(n为正整数).
③(x-1)(x99+x98+x97+…+x2+x+1)=_______.
(3)通过以上规律请你进行下面的探索:
①(a-b)(a+b)=_______.
②(a-b)(a2+ab+b2)=______.
③(a-b)(a3+a2b+ab2+b3)=______.
2.(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.
3.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.
参考答案
A卷
一、1.D
2.C 点拨:一个算式能否用平方差公式计算,关键要看这个算式是不是两个数的和与这两个数的差相乘的形式,选项A,B,D都不符合平方差公式的结构特征,只有选项C可以用平方差公式计算,故选C.
3.D 点拨:①(3a+4)(3a-4)=(3a)2-42=9a2-16,
②(2a2-b)(2a2+b)=(2a2)2-b2=4a4-b2,③
显示全部