文档详情

平面的基本事实与推论课前导学案 高一下学期数学人教B版(2019)必修第四册.docx

发布:2025-03-06约1.38千字共5页下载文档
文本预览下载声明

11.2平面的基本事实与推论

——高一数学人教B版(2019)必修第四册课前导学

知识填空

1.基本事实1:经过不在一条直线上的个点,有且只有一个平面.

基本事实2:如果一条直线上的个点在一个平面内,那么这条直线在这个平面内.

基本事实3:如果两个不重合的平面有一个公共点,那么它们有且只有过该点的公共直线.

2.推论1:经过一条直线与直线一点,有且只有一个平面.

推论2:经过两条直线,有且只有一个平面.

推论3:经过两条平行直线,有且只有平面.

思维拓展

1.证明点、线共面的方法有哪些?

2.如果线段AB在平面内,那么直线AB在平面内吗?为什么?

基础练习

1.在空间中,两两相交的三条直线最多可以确定的平面的个数为()

A.1 B.2 C.3 D.4

2.下列命题是真命题的是()

A.四边形一定是平面图形

B.空间一个点与一条直线可以确定一个平面

C.一个平面的面积可以为

D.相交于同一点的四条直线最多可以确定6个平面

3.在三棱锥的棱AB,BC,CD,DA上分别取E,F,G,H四点,若,则点P()

A.一定在直线BD上 B.一定在直线AC上

C.在直线AC或BD上 D.不在直线AC上,也不在直线BD上

4.(多选)下列说法错误的是()

A.过一点有且只有一条直线与已知直线平行

B.过一点有且只有一条直线与已知直线垂直

C.过平面外一点有且只有一条直线与该平面平行

D.过平面外一点有且只有一个平面与该平面平行

【答案及解析】

一、知识填空

1.3 两 一条

2.外 相交 一个

二、思维拓展

1.①先由确定平面的条件确定一个平面,然后再证明其他的点、线在该平面内.

②先由有关点、线确定一个平面,再由其余元素确定一个平面β,然后根据有关定理,证明这两个平面重合.

2.直线AB在平面内,因为线段AB在平面内,所以线段AB上的所有点都在平面内,故线段AB上A,B两点一定在平面内,由公理1可知直线AB在平面内.

三、基础练习

1.答案:C

解析:在空间中,两两相交的三条直线最多可以确定3个平面,如图,PA,PB,PC相交于一点P,且PA,PB,PC不共面,则PA,PB确定平面PAB,PB,PC确定平面PBC,PA,PC确定平面PAC.故选C.

2.答案:D

解析:四边形可以为平面图形,也可以为空间四边形,故A为假命题;

空间一条直线与直线外一点可以确定一个平面,故B为假命题;

平面是无限延展的,所以平面不计算面积,故C为假命题;

相交于同一点的四条直线,当任三条直线不共面时,可以确定6个平面,故D为真命题.

故选D.

3.答案:B

解析:如图,平面,平面,,平面,平面ACD.又平面平面,.又与BD无公共点,.故选B.

4.答案:ABC

解析:对于A,当点在已知直线上时,不存在过该点的直线与已知直线平行,故A错;

对于B,由于垂直包括相交垂直和异面垂直,因而过一点与已知直线垂直的直线有无数条,故B错;

对于C,过平面外一点与已知平面平行的直线有无数条,如过正方体的上底面的中心任意作一条直线(此直线在上底面内),此直线均与下底面平行,故C错;

对于D,过平面外一点与已知平面平行的平面有且只有一个,故D对.

显示全部
相似文档