文档详情

第二章__电化学腐蚀热力学.ppt

发布:2015-09-18约1.21万字共97页下载文档
文本预览下载声明
第二章 电化学腐蚀热力学 2.1金属腐蚀倾向的热力学判据 自然界中绝大多数金属元素(除Au,Pt等贵金属之外)均以化合态存在。大部分金属单质是通过外界对化合态体系提供能量(热能或者电能)还原而成的,因此,在热力学上金属单质是一个不稳定体系。在一定的外界环境条件下,金属的单质状态可自发地转变为化合物状态,生成相应的氧化物、硫化物和相应的盐等腐蚀产物,使体系趋于稳定状态,即有自动发生腐蚀的倾向。 金属腐蚀反应体系是一个开放体系。在反应过程中,体系与环境既有能量的交换又有物质的交换。金属腐蚀反应一般都是在恒温和恒压的条件下进行的,用体系的热力学状态函数吉布斯(Gibbs)自由能判据来判断反应的方向和限度较为方便。吉布斯自由能用G表示,对于等温等压并且没有非体积功的过程,腐蚀体系的平衡态或稳定态对应于古布斯自由能G为最低的状态。设物质系统吉布斯自由能变化为ΔG,则有 0自发过程 ΔG = 0平衡状态 (2-1) 0非自发过程 一个腐蚀体系是由金属和外围介质组成的多组分敞开体系。对于一个腐蚀化学反应,可用下式表示。 (2-2) 式中νi为反应式中组分i的化学计量数,反应物的计量数取负值,生成物的计量数取正值;Ai为参加腐蚀反应的物质组分。在任意情况下,腐蚀反应体系吉布斯自由能的改变ΔG服从范特荷甫等温方程。 (2-3) 式中ΔG?为反应的标准吉布斯自由能的改变;R为气体常数;T为热力学温度,Q为活度商(或者逸度商)用下式表示。 (2-4) 当腐蚀反应达平衡时,活度商Q就是平衡常数K。体系吉布斯自由能的改变ΔG为0,得出标准吉布斯自由能与平衡常数的关系式。 (2-5) 所以在任意活度的情况下,吉布斯自由能的改变为, (2-6) 恒温、恒压条件下,腐蚀反应吉布斯自由能的变化可由反应中各物质的化学势计算得到,即 (2-7) 式中μi 为组分i的化学势。化学势是恒温恒压及组分i以外的其他物质量不变的情况下物质的偏摩尔自由能根据溶液中组分i的化学势等温式 (2-8) (2-9) 2.2 电化学腐蚀电池 电化学腐蚀是指金属和电解质接触时,金属失去电子变为离子进入溶液,引起的金属的破坏。由于实际中电化学腐蚀的环境十分普遍,因而电化学腐蚀是金属材料腐蚀中最普遍的现象。例如、在潮湿的大气中各种金属结构、车辆、飞机、桥梁钢架等的腐蚀,海水中采油平台、码头、船体的腐蚀,土壤中地下管道的腐蚀,在含酸、含碱、含盐的水溶液等工业介质中各种金屑及其设备的腐蚀以及熔盐中金属的腐蚀等,都属于电化学腐蚀。其实质是浸在电解质溶液中的金属表面上进行阳极氧化溶解的同时还伴随着溶液中氧化剂在金属表面上的还原,其腐蚀破坏规律遵循电化学腐蚀原理。为了解释金属发生电化学腐蚀的原因,人们提出了腐蚀原电池模型。 2.2.1原电池 原电池是一个可以将化学能转变为电能的装置。铜锌原电池(也称丹尼尔原电池)是人们熟知的可逆原电池,如图2.2所示。原电池由三部分组成,即负电极系统、正电极系统和电解质溶液系统。按照电化学定义,电极电位较低的电极称为负极,电极电位较高的电极称为正极。根据习惯上的称谓,在原电池中,负极是阳极,发生氧化反应,正极是阴极,发生还原反应。也就是我们常说的阳极氧化,阴极还原。丹尼尔原电池中,锌电极作为阳极,发生氧化反应, Zn–2e → Zn2+, 铜电极作为阴极,发生还原反应, Cu2+ + 2e →Cu, 这两种反应又叫电极反应。整个电池总反应为 Cu2+ + Zn → Cu + Zn2+。 2.2.2电解池 将铜锌原电池中的负载改为电源,相当于外加电源和原电池并联,如图2.3所示。就形成了电解池。并联的结果会出现两种情况。一是若外加电源的电位大于原电池的电位时,外加电源对原电池做电功,原电池就变为了电解池;二是如果外加电源的电位小于原电池的电位时,原电池反过来对外加电源做电功,回复为其原电池的状态。一般电解池的外加电源的电位都大于原电池的电位,所以电解池是一个可以将电能转变为化
显示全部
相似文档