基于ResNet50和ViT的滚动轴承故障检测方法.docx
基于ResNet50和ViT的滚动轴承故障检测方法
目录
基于ResNet50和ViT的滚动轴承故障检测方法(1)...............3
内容概括................................................3
研究背景与意义..........................................3
相关技术综述............................................4
基于ResNet50的故障检测方法..............................5
4.1ResNet50模型介绍.......................................6
4.2滚动轴承故障数据集构建.................................7
4.3ResNet50在轴承故障检测中的应用.........................7
基于ViT的故障检测方法...................................8
5.1ViT模型介绍............................................9
5.2滚动轴承故障数据集构建................................10
5.3ViT在轴承故障检测中的应用.............................11
结合ResNet50和ViT的轴承故障检测方法....................12
6.1ResNet50和ViT融合机制.................................13
6.2融合模型训练过程......................................14
6.3融合模型性能评估......................................15
实验结果分析...........................................16
7.1训练参数调整..........................................16
7.2测试数据集表现........................................17
7.3参数优化策略..........................................18
总结与展望.............................................19
基于ResNet50和ViT的滚动轴承故障检测方法(2)..............20
内容概览...............................................20
1.1研究背景..............................................21
1.2研究意义..............................................22
1.3文献综述..............................................23
1.3.1滚动轴承故障检测技术概述............................24
1.3.2ResNet50模型研究....................................25
1.3.3ViT模型研究.........................................26
1.3.4基于深度学习的故障检测方法..........................26
方法与实现.............................................27
实验结果与分析.........................................28
3.1实验数据集介绍........................................29
3.2实验结果..............................................30
3.2.1ResNet50模型结果....................................31
3.2.2ViT模型结果.........................................32
3.2.3模型融合结果........................................32
3.3结果分析.......