单片机原理及应用教案 .doc
单片机原理及应用
教案
机电工程学院
电气工程系
绪论
第一节单片机
单片机即单片机微型计算机,是将计算机主机(CPU、内存和I/O接口)集成在一小块硅片上的微型机。
第二节单片机的历史与现状
第一阶段(1976~1978年):低性能单片机的探索阶段。以Intel公司的MCS-48为代表,采用了单片结构,即在一块芯片内含有8位CPU、定时/计数器、并行I/O口、RAM和ROM等。主要用于工业领域。
第二阶段(1978~1982年):高性能单片机阶段,这一类单片机带有串行I/O口,8位数据线、16位地址线可以寻址的范围达到64K字节、控制总线、较丰富的指令系统等。这类单片机的应用范围较广,并在不断的改进和发展。
第三阶段(1982~1990年):16位单片机阶段。16位单片机除CPU为16位外,片内RAM和ROM容量进一步增大,实时处理能力更强,体现了微控制器的特征。例如Intel公司的MCS-96主振频率为12M,片内RAM为232字节,ROM为8K字节,中断处理能力为8级,片内带有10位A/D转换器和高速输入/输出部件等。
第四阶段(1990年~):微控制器的全面发展阶段,各公司的产品在尽量兼容的同时,向高速、强运算能力、寻址范围大以及小型廉价方面发展。
第三节单片机的应用领域
一、单片机在仪器仪表中的应用
二、单片机在机电一体化中的应用
三、单片机在智能接口和多机系统中的应用
四、单片机在生活中的应用
第二章硬件结构
第一节MCS-51单片机及其演变
特点
(1)一个8位微处理器CPU。
(2)数据存储器RAM和特殊功能寄存器SFR。
(3)内部程序存储器ROM。
(4)两个定时/计数器,用以对外部事件进行计数,也可用作定时器。
(5)四个8位可编程的I/O(输入/输出)并行端口,每个端口既可做输入,也可做输出。
(6)一个串行端口,用于数据的串行通信。
(7)中断控制系统。
(8)内部时钟电路。
第二节80C51单片机的基本结构
1)中央处理器(CPU)
中央处理器是单片机的核心,完成运算和控制功能。MCS-51的CPU能处理8位二进制数或代码。
2)内部数据存储器(内部RAM)
8051芯片中共有256个RAM单元,但其中后128单元被专用寄存器占用,能作为寄存器供用户使用的只是前128单元,用于存放可读写的数据。因此通常所说的内部数据存储器就是指前128单元,简称内部RAM。
3)内部程序存储器(内部ROM)
8051共有4KB掩膜ROM,用于存放程序、原始数据或表格,因此,称之为程序存储器,简称内部ROM。
4)定时/计数器
8051共有两个16位的定时/计数器,以实现定时或计数功能,并以其定时或计数结果对计算机进行控制。
5)并行I/O口
MCS-51共有4个8位的I/O口(P0、P1、P2、P3),以实现数据的并行输入/输出。在实训中我们已经使用了P1口,通过P1口连接8个发光二极管。
第三节80C51单片机的引脚功能
MCS-51是标准的40引脚双列直插式集成电路芯片,引脚排列请参见图
P0.0~P0.7:P0口8位双向口线。
P1.0~P1.7:P1口8位双向口线。
P2.0~P2.7:P2口8位双向口线。
P3.0~P3.7:P3口8位双向口线。
ALE:地址锁存控制信号。在系统扩展时,ALE用于控制把P0口输出的低8位地址锁存起来,以实现低位地址和数据的隔离。此外,由于ALE是以晶振1/6的固定频率输出的正脉冲,因此,可作为外部时钟或外部定时脉冲使用。
PSEN:外部程序存储器读选通信号。在读外部ROM时,PSEN有效(低电平),以实现外部ROM单元的读操作。
EA:访问程序存储控制信号。当信号为低电平时,对ROM的读操作限定在外部程序存储器;当信号为高电平时,对ROM的读操作是从内部程序存储器开始,并可延至外部程序存储器。
RST:复位信号。当输入的复位信号延续两个机器周期以上的高电平时即为有效,用以完成单片机的复位初始化操作。
XTAL1和XTAL2:外接晶体引线端。当使用芯片内部时钟时,此二引线端用于外接石英晶体和微调电容;当使用外部时钟时,用于接外部时钟脉冲信号。
VSS:地线。
VCC:+5V电源。
以上是MCS-51单片机芯片40条引脚的定义及简单功能说明,读者可以对照实训电路找到相应引脚,在电路中查看每个引脚的连接使用。
P3口线的第二功能。P3的8条口线都定义有第二功能
第四节存储器结构
MCS-51单片机的芯片内部有RAM和ROM两类存储器,即所谓的内部RAM和内部ROM
MCS-51内部程序存储器
MCS-51的程序存