文档详情

基于奇异值分解的MVDR方法及其在信号频率估计领域的应用.doc

发布:2016-04-13约7.88千字共20页下载文档
文本预览下载声明
现代信号处理 学 号: 小 组 组 长: 小 组 成 员及分工: 任 课 教 师: 论文题目 基于奇异值分解的MVDR方法及其在信号频率估计领域的应用 摘要:本文主要是介绍和验证MVDR的算法,此算法应用于信号频率估计的领域中。我们通过使用经典的MVDR算法验证算法的可行性,再通过引用了奇异值分解的思想对MVDR方法进行了改进,在验证这种改进思想的方法可行性时,我们发现基于这种奇异值分解的MVDR方法在信号频率估计上具有提高检测精度的特性,这也说明了这种思想在应用信号频率估计时是可行的。 关键词:MVDR算法 奇异值分解 信号频率估计 论文题目(English) MVDR method based on singular value decomposition and its application in signal frequency estimation Abstract:In this paper, the algorithm of MVDR is introduced, and the algorithm is applied to the field of signal frequency estimation. By using the classical MVDR algorithm to verify the feasibility of the algorithm, and then through the use of the idea of singular value decomposition to improve the MVDR method, in the verification of the feasibility of the method, we found that the MVDR method based on the singular value decomposition has the characteristics of improving the detection accuracy in signal frequency estimation. It also shows that this idea is feasible in the application of signal frequency estimation. Key words: MVDR method Singular value decomposition Signal frequency estimation 引言 基于奇异值分解的特征提取算法在信号与图像处理等方面有着广泛的应用,国内外很多学者也对此进行了大量的研究。奇异值分解在小波图像边缘检测中的应用,使得离散小波变换的全局尺度选择更加容易。研究表明,奇异值分解具有理想的去相关特性,基于奇异值分解的信号分析方法可以对信号进行重构,较好的从背景噪声中分离出有用信号的特征信息[1]。研究表明,基于奇异值分解的信号特征提取方法的关键在于奇异值特征阶数的选择,如何有效的选取特征值仍是一个有待研究的问题。 在许多领域, 所研究的信号通常被认为是具有各态历经性的平稳随机信号, 很难用确定的数学关系式去描述。随机信号的功率谱能反映信号的频率成分以及各成分的相对强弱, 能从频域上揭示信号的节律, 是非确定性信号的重要特征。因此, 可采用给定的N 个样本数据对相应平稳随机信号的功率谱密度进行估计,即功率谱估计(Power spectrum estimation)。近年来, 基于特征分解功率谱估计方法已经在通信、雷达、导航、声纳、地震、射电天文和生物医学工程等科技领域中得到广泛应用。 MVDR (minimum variance distortion response)是J.Capon于1969年研究地震波的空间谱时提出的也称为Capon谱。1971,Lacoss将该方法应用于单一时间序列谱估计, 并证明了该方法得出的估计是谱分量的最小方差无偏估计, 其思想是将正弦过程看成是频率未知的确定信号, 使该信号通过一个FIR系统,而噪声被尽量抑制, 该方法在自动语音识别(ASR)等领域已经得到广泛应用[2]。 1997 年ManoharN.Murthi和BhaskerD.Rao 首次将其应用到语音信号的谱包络估计中, 解决了LP谱对基音周期较高的浊音信号的频谱估计不准的问题。和LP谱及FFT能量谱相比, MVDR谱具有更小的方差, 并且在
显示全部
相似文档