文档详情

超连续谱光源应用系列(一)——表面等离子体.doc

发布:2015-09-22约字共2页下载文档
文本预览下载声明
超连续谱光源应用系列(一)——表面等离子体 表面等离子体激元(surface Plasmon polarizations, SPPs)是一种沿导体和电介质分界表面传播的特殊表面电磁波,其振幅随着离分界面的距离的增大而成指数衰减,它能被电子也能被光激发。 表面等离子共振技术(Surface Plasmon Resonance technology,SPR)是20世纪90年代发展起来的,应用SPR原理检测生物传感芯片(biosensor chip)上配位体与分析物作用的一种新技术。 发展简史 1902年,Wood在光学实验中发现SPR现象 1941年,Fano解释了SPR现象 1971年,Kretschmann为SPR传感器结构奠定了基础 1983年,Liedberg将SPR用于IgG与其抗原的反应测定 1987年,Knoll等人开始SPR成像研究 1990年,Biacore AB公司开发出首台商品化SPR仪器 表面等离子共振原理 光在棱镜与金属膜表面上发生全反射现象时,会形成消逝波进入到光疏介质中,而在介质(假设为金属介质)中又存在一定的等离子波。当两波相遇时可能会发生共振。当消逝波与表面等离子波发生共振时,检测到的反射光强会大幅度地减弱。能量从光子转移到表面等离子,入射光的大部分能量被表面等离子波吸收,使得反射光的能量急剧减少。可以从反射光强的响应曲线看到一个最小的尖峰,此时对应的入射光波长为共振波长,对应的入射角为SPR角。SPR角随金表面折射率变化而变化,而折射率的变化又与金表面结合的分子质量成正比。这就是SPR对物质结合检测的基本原理。 SPR用途简介 实时分析,简便快捷地监测DNA与蛋白质之间、蛋白质分子之间以及药物—蛋白质、核酸—核酸、抗原—抗体、受体—配体等等生物分子之间的相互作用,在生命科学、医疗检测、药物筛选、食品检测、环境监测、毒品检测、法医鉴定等领域具有广泛的应用需求。 超连续谱是指超短脉冲在非线性介质中传输时,由于介质的非线性效应及色散效应的共同作用,导致脉冲的光谱被极大的加宽,使光谱的宽度远远大于入射光脉冲的宽度。 超连续谱光源具有普通白光光源和单色激光光源两者的优点,可以输出光谱宽度覆盖400~2400nm,而同时又保持了激光光源相干性好、亮度高的优点。 以超连续谱光源为光源,对基于SPPs共振的衰减全反射进行研究有很大的优点:一是通过精确选择入射波长,使SPPs产生的衰减全反射共振深度最大,即使金属薄膜厚度等参数有所偏差时,仍能通过调整使系统处于最佳工作状态;二是可以同时进行多波长工作,保持系统条件的一致性,可以满足许多特殊的测量工作;三是可以通过反射光强测量,光谱测量以及相位检测等多种原理反应SPPs共振效应,具有既能保证测试精度,又可以在同一系统中从多方面反映SPPs共振特性的优点。 目前北京拓普光研在超连续谱光源应用方面做了诸多工作,超连续谱光源在诸多领域有重要的应用价值,前景十分看好。
显示全部
相似文档