高频电子线路课后.ppt
7-12方波调频电路如图所示,其中,Ec=Ee=E1=12V,E2=5V,E3=3V,R1=4.5kΩ,R2=3kΩ,C1=C2=1000pF,调制信号υΩ(t)=1.5cos104tV(V),晶体管的β>100。求调频方波的瞬时表达式。题7-12图第31页,课件共45页,创作于2023年2月解7-12在该电路中,V5、V6、R1、R2组成受控电流源,使I1、I2随调制信号uΩ而变化。V1、V2、VD1、VD2和V3、V4、VD3、VD4以及电容C1、C2、组成一个多谐振荡器。其振荡频率受I1、I2的控制。因此,当调制信号uΩ变化时,振荡频率也随之改变,达到了调频的目的。输出LC回路是一个选频电路,对振荡器输出调频方波的中心频率基频谐振,从而输出正弦调频信号。V3截止时,VE4输出为高电平,VOH=VE4=E2=5V,V3饱和时,VE4输出为低电平,VOL=VE4=0V。设在某个时刻V3开始导通,经过C1、C2耦合形成的正反馈,使得V3很快由截止变为饱和,则VE4从高电平5V跳变为低电平0V,而V1由饱和变为截止,VE2从低电平0V跳变为高电平5V。第32页,课件共45页,创作于2023年2月高频电子线路习题参考答案关于高频电子线路课后第1页,课件共45页,创作于2023年2月7-1角调波u(t)=10cos(2?ⅹ106t+10cos2000πt)(V),试确定:(1)最大频偏;(2)最大相偏;(3)信号带宽;(4)此信号在单位电阻上的功率;(5)能否确定这是FM波还是PM波?(6)调制电压。解7-1第2页,课件共45页,创作于2023年2月7-2调制信号uΩ=2cos2πⅹ103t+3cos3π*103t,调频灵敏度kf=3kHZ/V,载波信号为uc=5cos2πⅹ107t(V),试写出此FM信号表达式。解7-2由题意可知:第3页,课件共45页,创作于2023年2月7-3调制信号如图所示。(1)画出FM波的△ω(t)和△φ(t)
曲线;(2)画出PM波的△ω(t)和△φ(t)曲线;(3)
画出FM波和PM波的波形草图。解7-3波形如下图所示。题7—3图第4页,课件共45页,创作于2023年2月信号(a)在FM时,它们的频率为线性变化,称为线性调频或扫频信号;由于的积分限不定,所以波形实际上可沿纵坐标上下移动;第5页,课件共45页,创作于2023年2月信号(b)在PM时,它们的频率为线性变化,称为线性调频或扫频信号;第6页,课件共45页,创作于2023年2月信号(c)可以认为是数字信号,因此实现的调制为数字调制,又因为是二元信号,对它进行FM和PM分别称为2FSK和2PSK。PM信号的波形与DSB信号的波形相同,故在数字调制中,可用产生DSB信号的方法产生PM(或PSK)信号。第7页,课件共45页,创作于2023年2月7-4频率为100MHz的载波被频率被5kHz的正弦信号调制,
最大频偏为50kHz。,求此时FM波的带宽。若UΩ加倍,
频率不变,带宽是多少?若UΩ不变,频率增大一倍,带宽
如何?若UΩ和频率都增大一倍,带宽又如何解7-4第8页,课件共45页,创作于2023年2月第9页,课件共45页,创作于2023年2月7-5电视四频道的伴音载频fc=83.75MHz,△fm=50kHz,Fmax=15kHz。(1)画出伴音信号频谱图;(2)计算信号带宽;(3)瞬时频率的变化范围是多少?解7-5因为没有给定伴音调制信号的频谱,而且伴音是一个多频调制调频波。由于调频是非线性频谱搬移,多个频率分量调频所产生的结果不能看作是每个频率分量单独调频所得结果的线性叠加。因此,伴音信号的频谱中除了包含载频与调制信号各频率分量的n次谐波的组合频率分量外,还包含着载频与调制信号的每一频率分量的各次谐波分量一起产生的组合频率分量。所以伴音信号的频谱很复杂,无法正确画出。第10页,课件共45页,创作于2023年2月(3)(2)信号带宽为第11页,课件共45页,创作于2023年2月7-6有一个AM和FM波,载频均为1MHz,调制信号均为υΩ(t)=0.1sin(2πⅹ103t)V。FM灵敏度为kf=1kHz/V,动态范围大于20V。(1)求AM波和FM波的信号带宽;(2)若υΩ(t)=20sin(2π*103t)V,重新计算AM波和FM波的带宽;(3)由此